IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p646-d76095.html
   My bibliography  Save this article

Static Formation Temperature Prediction Based on Bottom Hole Temperature

Author

Listed:
  • Changwei Liu

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Kewen Li

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Youguang Chen

    (Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin, TX 78712, USA)

  • Lin Jia

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Dong Ma

    (Petroleum Engineering College, Yangtze University, Wuhan 430100, China)

Abstract

Static formation temperature (SFT) is required to determine the thermophysical properties and production parameters in geothermal and oil reservoirs. However, it is not easy to determine SFT by both experimental and physical methods. In this paper, a mathematical approach to predicting SFT, based on a new model describing the relationship between bottom hole temperature (BHT) and shut-in time, has been proposed. The unknown coefficients of the model were derived from the least squares fit by the particle swarm optimization (PSO) algorithm. Additionally, the ability to predict SFT using a few BHT data points (such as the first three, four, or five points of a data set) was evaluated. The accuracy of the proposed method to predict SFT was confirmed by a deviation percentage less than ±4% and a high regression coefficient R 2 (>0.98). The proposed method could be used as a practical tool to predict SFT in both geothermal and oil wells.

Suggested Citation

  • Changwei Liu & Kewen Li & Youguang Chen & Lin Jia & Dong Ma, 2016. "Static Formation Temperature Prediction Based on Bottom Hole Temperature," Energies, MDPI, vol. 9(8), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:646-:d:76095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/646/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Espinoza-Ojeda, O.M. & Prol-Ledesma, R.M. & Iglesias, E.R. & Figueroa-Soto, A., 2017. "Update and review of heat flow measurements in México," Energy, Elsevier, vol. 121(C), pages 466-479.
    2. Felix Schölderle & Gregor Götzl & Florian Einsiedl & Kai Zosseder, 2022. "Uncertainty Assessment of Corrected Bottom-Hole Temperatures Based on Monte Carlo Techniques," Energies, MDPI, vol. 15(17), pages 1-27, August.
    3. Yuridiana Rocio Galindo-Luna & Efraín Gómez-Arias & Rosenberg J. Romero & Eduardo Venegas-Reyes & Moisés Montiel-González & Helene Emmi Karin Unland-Weiss & Pedro Pacheco-Hernández & Antonio González-, 2018. "Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H 2 O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case," Energies, MDPI, vol. 11(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:646-:d:76095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.