IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p610-d75247.html
   My bibliography  Save this article

A Study of an Effective Heat-Dissipating Piezoelectric Fan for High Heat Density Devices

Author

Listed:
  • Chien-Nan Lin

    (Department of Mechanical Engineering, Far East University, Tainan 74448, Taiwan)

  • Jiin-Yuh Jang

    (Department of Mechanical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan)

  • Jin-Sheng Leu

    (Department of Mechanical Engineering, Air Force Institute of Technology, Kaohsiung 82047, Taiwan)

Abstract

Heat dissipation per unit volume has grown rapidly, as the size of modern electronic devices has continued to decrease. The air flow induced by an oscillating cantilever blade enhances the heat transfer performance of high heat density devices. The heat transfer improvement mainly depends on the velocity magnitude and distribution of air streams induced by the vibrating blade. Accordingly, this study numerically and experimentally examines the time-varying flow characteristics of a vibrating cantilever for five blade types. The blades are rectangular or trapezoidal with various widths and actuated at various frequencies. The fluid domain is numerically discretized using a dynamic meshing scheme to model the three-dimensional time-varying vibrating blade. The experiment utilizes nine hot-wire velocity meters to measure the average velocities. The flow structure with streamlines and velocity contours of the induced air flow are determined at various section planes. The results show that a major maximum-velocity region appears around the blade tip and that four minor local-maximum-velocity regions appear at the four corners. In addition, the width and width ratio of the blade significantly affects the velocity distribution of the flow induced by the vibrating cantilever blade.

Suggested Citation

  • Chien-Nan Lin & Jiin-Yuh Jang & Jin-Sheng Leu, 2016. "A Study of an Effective Heat-Dissipating Piezoelectric Fan for High Heat Density Devices," Energies, MDPI, vol. 9(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:610-:d:75247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/610/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hales, Alastair & Jiang, Xi, 2018. "A review of piezoelectric fans for low energy cooling of power electronics," Applied Energy, Elsevier, vol. 215(C), pages 321-337.
    2. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:610-:d:75247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.