IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i4p260-d67297.html
   My bibliography  Save this article

Effects of Climate Change and LUCC on Terrestrial Biomass in the Lower Heihe River Basin during 2001–2010

Author

Listed:
  • Haiming Yan

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
    These authors contributed equally to this work.)

  • Jinyan Zhan

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
    These authors contributed equally to this work.)

  • Feng Wu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China)

  • Huicai Yang

    (College of Water Sciences, Beijing Normal University, Beijing 100875, China)

Abstract

Ecosystem services are tightly coupled with availability of solar energy and its partition into energy fluxes, and biomass accumulation, which represents the energy flux in ecosystems, is a key aspect of ecosystem services. This study analyzed the effects of climate change and land use and land cover change (LUCC) on the biomass accumulation change in the Lower Heihe River Basin during 2001–2010. Biomass accumulation was represented with net primary productivity (NPP), which was estimated with the C-Fix model, and scenario analysis was carried out to investigate effects of climate change and LUCC on biomass accumulation change in a spatially explicit way. Results suggested climate change had an overall positive effect on biomass accumulation, mainly owning to changes in CO 2 concentration and temperature. LUCC accounted for 70.61% of biomass accumulation change, but primarily owning to fractional vegetation change (FVCC) rather than land conversion, and there is a negative interactive effect of FVCC and climate change on biomass accumulation, indicating FVCC resulting from water diversion played a dominant in influencing biomass accumulation. These results can provide valuable decision support information for the local ecosystem managers and decision makers to guarantee sustainable provision of essential ecosystem services.

Suggested Citation

  • Haiming Yan & Jinyan Zhan & Feng Wu & Huicai Yang, 2016. "Effects of Climate Change and LUCC on Terrestrial Biomass in the Lower Heihe River Basin during 2001–2010," Energies, MDPI, vol. 9(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:260-:d:67297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/4/260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/4/260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoli Hu & Ling Lu & Xin Li & Jianhua Wang & Xuegang Lu, 2015. "Ejin Oasis Land Use and Vegetation Change between 2000 and 2011: The Role of the Ecological Water Diversion Project," Energies, MDPI, vol. 8(7), pages 1-18, July.
    2. Zhanqi Wang & Jun Yang & Xiangzheng Deng & Xi Lan, 2015. "Optimal Water Resources Allocation under the Constraint of Land Use in the Heihe River Basin of China," Sustainability, MDPI, vol. 7(2), pages 1-18, February.
    3. Matthew Reeves & Adam Moreno & Karen Bagne & Steven Running, 2014. "Estimating climate change effects on net primary production of rangelands in the United States," Climatic Change, Springer, vol. 126(3), pages 429-442, October.
    4. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    5. Jin Wang & Guo Cheng & Yi Gao & Ai Long & Zhong Xu & Xin Li & Hongyan Chen & Tom Barker, 2008. "Optimal Water Resource Allocation in Arid and Semi-Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 239-258, February.
    6. Wei Song & Xiangzheng Deng, 2015. "Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain," Energies, MDPI, vol. 8(6), pages 1-16, June.
    7. Philippe Ciais & Sébastien Gervois & N. Vuichard & S. L. Piao & N. Viovy, 2011. "Effects of land use change and management on the European cropland carbon balance," Post-Print hal-00716512, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chunli & Jiang, Qun'ou & Engel, Bernard & Mercado, Johann Alexander Vera & Zhang, Zhonghui, 2020. "Analysis on net primary productivity change of forests and its multi–level driving mechanism – A case study in Changbai Mountains in Northeast China," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Zhan, Jinyan & Chu, Xi & Li, Zhihui & Jia, Siqi & Wang, Guofeng, 2019. "Incorporating ecosystem services into agricultural management based on land use/cover change in Northeastern China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 401-411.
    3. Zhipeng Zhu & Guangyu Wang & Jianwen Dong, 2019. "Correlation Analysis between Land Use/Cover Change and Air Pollutants—A Case Study in Wuyishan City," Energies, MDPI, vol. 12(13), pages 1-15, July.
    4. Weimin Liu & Dengming Yan & Zhilei Yu & Zening Wu & Huiliang Wang & Jie Yang & Simin Liu & Tianye Wang, 2024. "Analysis of Dynamic Changes in Vegetation Net Primary Productivity and Its Driving Factors in the Two Regions North and South of the Hu Huanyong Line in China," Land, MDPI, vol. 13(6), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    2. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    3. Xiaowei Yao & Zhanqi Wang & Hongwei Zhang, 2016. "Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    4. Lo, Yueh-Hsin & Blanco, Juan A. & Canals, Rosa M. & González de Andrés, Ester & San Emeterio, Leticia & Imbert, J. Bosco & Castillo, Federico J., 2015. "Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach," Ecological Modelling, Elsevier, vol. 312(C), pages 322-334.
    5. J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
    6. Chong Meng & Siyang Zhou & Wei Li, 2021. "An Optimization Model for Water Management under the Dual Constraints of Water Pollution and Water Scarcity in the Fenhe River Basin, North China," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    7. Tong Zhang & Sophia Shuang Chen & Guangyu Li, 2020. "Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China," Environment and Planning B, , vol. 47(3), pages 363-380, March.
    8. George Tsakiris & Mike Spiliotis, 2011. "Planning Against Long Term Water Scarcity: A Fuzzy Multicriteria Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1103-1129, March.
    9. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    10. Niaz Ali Khan & Muhammad Humayun & Muhammad Usman & Zahid Ali Ghazi & Abdul Naeem & Abbas Khan & Asim Laeeq Khan & Asif Ali Tahir & Habib Ullah, 2021. "Structural Characteristics and Environmental Applications of Covalent Organic Frameworks," Energies, MDPI, vol. 14(8), pages 1-21, April.
    11. Xiangwei Zhao & Qian Gao & Yaojie Yue & Lian Duan & Shun Pan, 2018. "A System Analysis on Steppe Sustainability and Its Driving Forces—A Case Study in China," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    12. Kai Li & Zhili Ma & Jinjin Liu, 2019. "A New Trend in the Space–Time Distribution of Cultivated Land Occupation for Construction in China and the Impact of Population Urbanization," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    13. Lifang Wang & Zhenlong Nie & Min Liu & Le Cao & Pucheng Zhu & Qinlong Yuan, 2022. "Rational Allocation of Water Resources in the Arid Area of Northwestern China Based on Numerical Simulations," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    14. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    15. Shanshan Xu & Qinghe Zhao & Shengyan Ding & Mingzhou Qin & Lixin Ning & Xiaoyu Ji, 2018. "Improving Soil and Water Conservation of Riparian Vegetation Based on Landscape Leakiness and Optimal Vegetation Pattern," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    16. Bao Meng & Xuxi Wang & Zhifeng Zhang & Pei Huang, 2022. "Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by Urban Expansion in the Chengdu Metropolitan Area," Land, MDPI, vol. 11(9), pages 1-17, September.
    17. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    18. J. Shannon Neibergs & Tipton D. Hudson & Chad E. Kruger & Kaelin Hamel-Rieken, 2018. "Estimating climate change effects on grazing management and beef cattle production in the Pacific Northwest," Climatic Change, Springer, vol. 146(1), pages 5-17, January.
    19. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    20. Jun Yang & Gui Jin & Xianjin Huang & Kun Chen & Hao Meng, 2018. "How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China," Sustainability, MDPI, vol. 10(11), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:260-:d:67297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.