IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p797-d79899.html
   My bibliography  Save this article

Adaptive TrimTree: Green Data Center Networks through Resource Consolidation, Selective Connectedness and Energy Proportional Computing

Author

Listed:
  • Saima Zafar

    (Department of Electrical Engineering, National University of Computer & Emerging Sciences, Lahore 54700, Pakistan)

  • Shafique Ahmad Chaudhry

    (Department of Computer Science, Dhofar University, Salalah 211, Oman)

  • Sara Kiran

    (Department of Electrical Engineering, National University of Computer & Emerging Sciences, Lahore 54700, Pakistan)

Abstract

A data center is a facility with a group of networked servers used by an organization for storage, management and dissemination of its data. The increase in data center energy consumption over the past several years is staggering, therefore efforts are being initiated to achieve energy efficiency of various components of data centers. One of the main reasons data centers have high energy inefficiency is largely due to the fact that most organizations run their data centers at full capacity 24/7. This results into a number of servers and switches being underutilized or even unutilized, yet working and consuming electricity around the clock. In this paper, we present Adaptive TrimTree; a mechanism that employs a combination of resource consolidation, selective connectedness and energy proportional computing for optimizing energy consumption in a Data Center Network (DCN). Adaptive TrimTree adopts a simple traffic-and-topology-based heuristic to find a minimum power network subset called ‘active network subset’ that satisfies the existing network traffic conditions while switching off the residual unused network components. A ‘passive network subset’ is also identified for redundancy which consists of links and switches that can be required in future and this subset is toggled to sleep state. An energy proportional computing technique is applied to the active network subset for adapting link data rates to workload thus maximizing energy optimization. We have compared our proposed mechanism with fat-tree topology and ElasticTree; a scheme based on resource consolidation. Our simulation results show that our mechanism saves 50%–70% more energy as compared to fat-tree and 19.6% as compared to ElasticTree, with minimal impact on packet loss percentage and delay. Additionally, our mechanism copes better with traffic anomalies and surges due to passive network provision.

Suggested Citation

  • Saima Zafar & Shafique Ahmad Chaudhry & Sara Kiran, 2016. "Adaptive TrimTree: Green Data Center Networks through Resource Consolidation, Selective Connectedness and Energy Proportional Computing," Energies, MDPI, vol. 9(10), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:797-:d:79899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/797/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeliang Qiu & Congfeng Jiang & Yumei Wang & Dongyang Ou & Youhuizi Li & Jian Wan, 2019. "Energy Aware Virtual Machine Scheduling in Data Centers," Energies, MDPI, vol. 12(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:797-:d:79899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.