IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p776-d78905.html
   My bibliography  Save this article

Accuracy Enhancement of Mixed Power Flow Analysis Using a Modified DC Model

Author

Listed:
  • Soobae Kim

    (Department of Electrical Engineering, Kyungpook National University, Daegu 41566, Korea)

Abstract

The mixed power flow analysis method decreases the computational complexity and achieves a high level of simulation accuracy. The mixed approach combines the ac with the dc power flow models, depending on the area of interest. The accurate ac model is used in the study area of interest to obtain high simulation accuracy, while the approximate dc model is used in the remainder of the system to reduce the required computations. In the original mixed approach, the errors originating from the use of the dc model may propagate to the area of interest where accurate simulation outcomes are required; thus, the simulation accuracy might not be satisfactory. This paper presents a new method of enhancing the simulation accuracy of the mixed power flow analysis using available information. In the proposed approach, a modified dc model is used instead of the traditional one and is constructed from an initial base-case ac solution. The new dc model compensates for the errors originating from the neglect of the real power losses and the assumption of a flat voltage magnitude in the conventional dc model. Thus, the proposed method can improve the simulation accuracy in the area of interest. The superior computational benefits can also be preserved by maintaining linear characteristics of the dc model. Case studies with the IEEE 118-bus system are provided to validate the enhanced accuracy of the proposed method.

Suggested Citation

  • Soobae Kim, 2016. "Accuracy Enhancement of Mixed Power Flow Analysis Using a Modified DC Model," Energies, MDPI, vol. 9(10), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:776-:d:78905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/776/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2016. "A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids," Energies, MDPI, vol. 9(11), pages 1-18, November.
    2. Ziqi Wang & Jinghan He & Alexandru Nechifor & Dahai Zhang & Peter Crossley, 2017. "Identification of Critical Transmission Lines in Complex Power Networks," Energies, MDPI, vol. 10(9), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:776-:d:78905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.