IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p9930-9945d55725.html
   My bibliography  Save this article

Swirling Combustor Energy Converter: H 2 /Air Simulations of Separated Chambers

Author

Listed:
  • Angelo Minotti

    (Department of Astronautic, Electrics & Energetics Engineering, University of Rome "La Sapienza" Via Eudossiana 18, Rome 00184, Italy)

  • Paolo Teofilatto

    (Department of Astronautic, Electrics & Energetics Engineering, University of Rome "La Sapienza" Via Eudossiana 18, Rome 00184, Italy)

Abstract

This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆ T ≤ 100 K, in order to be compatible with a thermal/electrical conversion by thermo-photovoltaic cells. The authors investigate how to reach that goal adopting swirling chambers integrated in a thermally-conductive and emitting element. The converter consists of a small parallelepiped brick inside two separated swirling meso-combustion chambers, which heat up the parallelepiped, emitting material by the combustion of H 2 and air at ambient pressure. The overall dimension is of the order of cm. Nine combustion simulations have been carried out assuming detailed chemistry, several length/diameter ratios ( Z / D = 3, 5 and 11) and equivalence ratios (0.4, 0.7 and 1); all are at 400 W of injected chemical power. Among the most important results are the converter surfaces temperatures, the heat loads, provided to the environment, and the chemical efficiency. The high chemical efficiency, h > 99.9%, is due to the relatively long average gas residence time coupled with the fairly good mixing due to the swirl motion and the impinging air/fuel jets that provide heat and radicals to the flame.

Suggested Citation

  • Angelo Minotti & Paolo Teofilatto, 2015. "Swirling Combustor Energy Converter: H 2 /Air Simulations of Separated Chambers," Energies, MDPI, vol. 8(9), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9930-9945:d:55725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/9930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/9930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelo Minotti & Enrico Sciubba, 2010. "LES of a Meso Combustion Chamber with a Detailed Chemistry Model: Comparison between the Flamelet and EDC Models," Energies, MDPI, vol. 3(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Minotti, 2016. "Energy Converter with Inside Two, Three, and Five Connected H 2 /Air Swirling Combustor Chambers: Solar and Combustion Mode Investigations," Energies, MDPI, vol. 9(6), pages 1-15, June.
    2. Seyed Ehsan Hosseini & Evan Owens & John Krohn & James Leylek, 2018. "Experimental Investigation into the Effects of Thermal Recuperation on the Combustion Characteristics of a Non-Premixed Meso-Scale Vortex Combustor," Energies, MDPI, vol. 11(12), pages 1-16, December.
    3. Ruirui Wang & Jingyu Ran & Xuesen Du & Juntian Niu & Wenjie Qi, 2016. "The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion," Energies, MDPI, vol. 9(6), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingzu Liu & Zhihua Wang & Liang Li & Kaidi Wan & Kefa Cen, 2018. "Reaction Mechanism Reduction for Ozone-Enhanced CH 4 /Air Combustion by a Combination of Directed Relation Graph with Error Propagation, Sensitivity Analysis and Quasi-Steady State Assumption," Energies, MDPI, vol. 11(6), pages 1-12, June.
    2. Markus Bösenhofer & Eva-Maria Wartha & Christian Jordan & Michael Harasek, 2018. "The Eddy Dissipation Concept—Analysis of Different Fine Structure Treatments for Classical Combustion," Energies, MDPI, vol. 11(7), pages 1-21, July.
    3. Angelo Minotti, 2016. "Energy Converter with Inside Two, Three, and Five Connected H 2 /Air Swirling Combustor Chambers: Solar and Combustion Mode Investigations," Energies, MDPI, vol. 9(6), pages 1-15, June.
    4. Maria Grazia De Giorgi & Aldebara Sciolti & Antonio Ficarella, 2014. "Application and Comparison of Different Combustion Models of High Pressure LO X /CH 4 Jet Flames," Energies, MDPI, vol. 7(1), pages 1-21, January.
    5. Yan Zhang & Zhengxing Zuo & Jinxiang Liu, 2015. "Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine," Energies, MDPI, vol. 8(8), pages 1-24, August.
    6. Seyed Ehsan Hosseini & Evan Owens & John Krohn & James Leylek, 2018. "Experimental Investigation into the Effects of Thermal Recuperation on the Combustion Characteristics of a Non-Premixed Meso-Scale Vortex Combustor," Energies, MDPI, vol. 11(12), pages 1-16, December.
    7. Ali Shamooni & Alberto Cuoci & Tiziano Faravelli & Amsini Sadiki, 2018. "Prediction of Combustion and Heat Release Rates in Non-Premixed Syngas Jet Flames Using Finite-Rate Scale Similarity Based Combustion Models," Energies, MDPI, vol. 11(9), pages 1-20, September.
    8. Yingzu Liu & Kaidi Wan & Liang Li & Zhihua Wang & Kefa Cen, 2018. "Verification and Validation of a Low-Mach-Number Large-Eddy Simulation Code against Manufactured Solutions and Experimental Results," Energies, MDPI, vol. 11(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9930-9945:d:55725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.