IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p9191-9210d54859.html
   My bibliography  Save this article

Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters

Author

Listed:
  • Jui-Ho Chen

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Weir Hung

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

Abstract

A systematic experiment verification of Chaos Embedded Sliding Mode Extremum Seeking Control for maximum power point tracking and a method for detecting possible faults in small wind turbine systems in advance are proposed in this paper. The chaotic logistic map is used to replace the random function in the particle swarm optimization algorithm for faster searching the optimal control parameter . From the experimental results, it is verified that the Chaos Embedded Sliding Mode Extremum Seeking Control scheme has a better dynamic response than traditional Extremum Seeking Control scheme and Hill-Climbing Search scheme for maximum power point tracking. In the proposed scheme for fault detection, a chaotic synchronization method is used to transform the maximum power point tracking signal into a chaos synchronization error distribution diagram. It is then taken as the characteristic for fault diagnosis purposes. Finally, an extension theory pattern recognition technique is applied to diagnose the fault. Notably, the use of the chaotic dynamic errors as the fault diagnosis characteristic reduces the number of extracted features required, and therefore greatly reduces both the computation time and the hardware implementation cost. From the experimental results, it is shown that the fault diagnosis rate of the proposed method exceeds 98% not only in non-real-time but also in real-time of faults detection of the blades.

Suggested Citation

  • Jui-Ho Chen & Weir Hung, 2015. "Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters," Energies, MDPI, vol. 8(9), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9191-9210:d:54859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/9191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/9191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jui-Ho Chen & Her-Terng Yau & Weir Hung, 2014. "Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems," Energies, MDPI, vol. 7(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoudao Huang & Yang Zhang & Zhikang Shuai, 2016. "Capacitor Voltage Ripple Suppression for Z-Source Wind Energy Conversion System," Energies, MDPI, vol. 9(1), pages 1-15, January.
    2. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoudao Huang & Yang Zhang & Zhikang Shuai, 2016. "Capacitor Voltage Ripple Suppression for Z-Source Wind Energy Conversion System," Energies, MDPI, vol. 9(1), pages 1-15, January.
    2. Oscar Barambones & Jose A. Cortajarena & Patxi Alkorta & Jose M. Gonzalez De Durana, 2014. "A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator," Energies, MDPI, vol. 7(10), pages 1-22, October.
    3. Hu, Lu & Xue, Fei & Qin, Zijian & Shi, Jiying & Qiao, Wen & Yang, Wenjing & Yang, Ting, 2019. "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system," Applied Energy, Elsevier, vol. 248(C), pages 567-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9191-9210:d:54859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.