IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p6153-6176d51478.html
   My bibliography  Save this article

Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing

Author

Listed:
  • Yongbin Zhang

    (Department of Energy & Resources Engineering, College of Engineering, Peking University, Beijing 100871, China)

  • Bin Gong

    (Department of Energy & Resources Engineering, College of Engineering, Peking University, Beijing 100871, China)

  • Junchao Li

    (Department of Energy & Resources Engineering, College of Engineering, Peking University, Beijing 100871, China)

  • Hangyu Li

    (Shell International Exploration and Production Inc., Houston, TX 77079, USA)

Abstract

In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM) is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.

Suggested Citation

  • Yongbin Zhang & Bin Gong & Junchao Li & Hangyu Li, 2015. "Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing," Energies, MDPI, vol. 8(6), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:6153-6176:d:51478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/6153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/6153/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandadige Samintha Anne Perera & Ashani Savinda Ranathunga & Pathegama Gamage Ranjith, 2016. "Effect of Coal Rank on Various Fluid Saturations Creating Mechanical Property Alterations Using Australian Coals," Energies, MDPI, vol. 9(6), pages 1-15, June.
    2. Huiying Tang & Yuan Di & Yongbin Zhang & Hangyu Li, 2017. "Impact of Stress-Dependent Matrix and Fracture Properties on Shale Gas Production," Energies, MDPI, vol. 10(7), pages 1-13, July.
    3. Renjie Shao & Yuan Di & Dawei Wu & Yu-Shu Wu, 2020. "An Integrally Embedded Discrete Fracture Model for Flow Simulation in Anisotropic Formations," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Yuwei Li & Lihua Zuo & Wei Yu & Youguang Chen, 2018. "A Fully Three Dimensional Semianalytical Model for Shale Gas Reservoirs with Hydraulic Fractures," Energies, MDPI, vol. 11(2), pages 1-19, February.
    5. Xuan Liu & Cheng Dai & Liang Xue & Bingyu Ji, 2018. "Estimation of fracture distribution in a CO2†EOR system through Ensemble Kalman filter," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 257-278, April.
    6. Renjie Shao & Yuan Di, 2018. "An Integrally Embedded Discrete Fracture Model with a Semi-Analytic Transmissibility Calculation Method," Energies, MDPI, vol. 11(12), pages 1-20, December.
    7. Yiyu Lu & Zhe Zhou & Zhaolong Ge & Xinwei Zhang & Qian Li, 2015. "Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines," Energies, MDPI, vol. 8(12), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:6153-6176:d:51478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.