IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p3867-3881d49131.html
   My bibliography  Save this article

Simulation of a Standalone, Portable Steam Generator Driven by a Solar Concentrator

Author

Listed:
  • Mohamed Sabry

    (Physics Department, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
    Solar Research Department, National Research Institute of Astronomy and Geophysics, Cairo 11421, Egypt)

  • Mouaaz Nahas

    (Electrical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

  • Saud H. Al-Lehyani

    (Physics Department, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

Abstract

Solar energy is a good solution for energy-deficiency problems, especially in regions such ‎as rural areas in the Middle East that have not been electrified yet or are ‎under electrification. In ‎this paper, with the aid of a Computational Fluid Dynamics simulation, we propose a ‎system that comprises a trough solar concentrator and a pipe—with flowing water—that ‎is set in the concentrator focus. The aim of this work is to investigate the feasibility of generating steam ‎from such a system as well as analyzing the generated steam quantitatively ‎and qualitatively. Effects of variation of solar radiation intensity, ambient temperature, water ‎flow rate and pipe diameter on the quantity and quality of the generated steam have been investigated. The results ‎show that a quantity of about 130 kg of steam could be generated per day with a 0.01 m diameter with 0.0042 kg/s flowing water, although qualitatively, a narrower pipe achieves better performance than a wider one. About 74 kg of daily accumulated steam mass with a temperature >423 K could be achieved for a 0.005 m diameter tube compared to about 50 kg for the 0.01 m diameter tube. Steam quality factor is higher at all flow rates for the 0.005 m diameter tube compared to that of 0.01 m.

Suggested Citation

  • Mohamed Sabry & Mouaaz Nahas & Saud H. Al-Lehyani, 2015. "Simulation of a Standalone, Portable Steam Generator Driven by a Solar Concentrator," Energies, MDPI, vol. 8(5), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:3867-3881:d:49131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/3867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/3867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsikalakis, Antonis & Tomtsi, T. & Hatziargyriou, N.D. & Poullikkas, A. & Malamatenios, Ch. & Giakoumelos, E. & Jaouad, O. Cherkaoui & Chenak, A. & Fayek, A. & Matar, T. & Yasin, A., 2011. "Review of best practices of solar electricity resources applications in selected Middle East and North Africa (MENA) countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2838-2849, August.
    2. Jaramillo, O.A. & Venegas-Reyes, E. & Aguilar, J.O. & Castrejón-García, R. & Sosa-Montemayor, F., 2013. "Parabolic trough concentrators for low enthalpy processes," Renewable Energy, Elsevier, vol. 60(C), pages 529-539.
    3. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehran Dehghan & Carlos F. Pfeiffer & Elyas Rakhshani & Reza Bakhshi-Jafarabadi, 2021. "A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East," Energies, MDPI, vol. 14(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukelia, Taqiy eddine & Mecibah, Mohamed-Salah, 2013. "Parabolic trough solar thermal power plant: Potential, and projects development in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 288-297.
    2. Borunda, Mónica & Garduno-Ramirez, Raul & Jaramillo, O.A., 2019. "Optimal operation of a parabolic solar collector with twisted-tape insert by multi-objective genetic algorithms," Renewable Energy, Elsevier, vol. 143(C), pages 540-550.
    3. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    4. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    5. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    6. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope," Renewable Energy, Elsevier, vol. 138(C), pages 793-804.
    7. Rahimi Telwar, Donya & Khodaei, Jalal & Samimi-Akhijahani, Hadi, 2024. "Thermo-economic evaluation and structural simulation of a parabolic solar collector (PTC) integrated with a desalination system," Energy, Elsevier, vol. 299(C).
    8. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    9. Rehan, Mirza Abdullah & Ali, Muzaffar & Sheikh, Nadeem Ahmed & Khalil, M. Shahid & Chaudhary, Ghulam Qadar & Rashid, Tanzeel ur & Shehryar, M., 2018. "Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions," Renewable Energy, Elsevier, vol. 118(C), pages 742-751.
    10. Jaramillo, O.A. & Borunda, Mónica & Velazquez-Lucho, K.M. & Robles, M., 2016. "Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts," Renewable Energy, Elsevier, vol. 93(C), pages 125-141.
    11. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    12. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    13. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    14. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    15. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    16. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    17. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    18. Syed M. Hussain & Wasim Jamshed & Rabia Safdar & Faisal Shahzad & Nor Ain Azeany Mohd Nasir & Ikram Ullah, 2023. "Chemical reaction and thermal characteristiecs of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno's model," Energy & Environment, , vol. 34(5), pages 1409-1432, August.
    19. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    20. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:3867-3881:d:49131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.