IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i12p12424-14181d60696.html
   My bibliography  Save this article

High Resolution Modeling of the Impacts of Exogenous Factors on Power Systems—Case Study of Germany

Author

Listed:
  • Antriksh Singh

    (Laboratory for Energy Conversion, Swiss Federal Institute of Technology, Sonneggstrasse 3, Zurich CH-8092, Switzerland)

  • Patrick Eser

    (Laboratory for Energy Conversion, Swiss Federal Institute of Technology, Sonneggstrasse 3, Zurich CH-8092, Switzerland)

  • Ndaona Chokani

    (Laboratory for Energy Conversion, Swiss Federal Institute of Technology, Sonneggstrasse 3, Zurich CH-8092, Switzerland)

  • Reza Abhari

    (Laboratory for Energy Conversion, Swiss Federal Institute of Technology, Sonneggstrasse 3, Zurich CH-8092, Switzerland)

Abstract

In order to reliably design the planning and operation of large interconnected power systems that can incorporate a high penetration of renewables, it is necessary to have a detailed knowledge of the potential impacts of exogenous factors on individual components within the systems. Previously, the assessment has often been conducted with nodes that are aggregated at the country or regional scale; this makes it impossible to reliably extrapolate the impact of higher penetration of renewables on individual transmission lines and/or power plants within an aggregated node. In order to be able to develop robust power systems this study demonstrates an integrated framework that employs high resolution spatial and temporal, physical modeling of power generation, electricity transmission and electricity demand, across the scale of a continent or country. Using Germany as a test case, an assessment of the impacts of exogenous factors, including local changes in ambient weather conditions, effect of timely implementation of policy, and contingency for scenarios in 2020 are demonstrated. It is shown that with the increased penetration of renewables, while the power production opportunities of conventional power plants are reduced, these power plants are required during periods of low renewables production due to the inherent variability of renewables. While the planned reinforcements in Germany, including high voltage direct current lines, reduce congestion on the grid and alleviate the differentials in power price across the country, on the other hand the reinforcements make the interconnected transmission system more vulnerable as local perturbations have a more widespread impact.

Suggested Citation

  • Antriksh Singh & Patrick Eser & Ndaona Chokani & Reza Abhari, 2015. "High Resolution Modeling of the Impacts of Exogenous Factors on Power Systems—Case Study of Germany," Energies, MDPI, vol. 8(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12424-14181:d:60696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/12/12424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/12/12424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Antriksh & Willi, David & Chokani, Ndaona & Abhari, Reza S., 2014. "Optimal power flow analysis of a Switzerland׳s transmission system for long-term capacity planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 596-607.
    2. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    3. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    2. Vadim A. Golubev & Viktoria A. Verbnikova & Ilia A. Lopyrev & Daria D. Voznesenskaya & Rashid N. Alimov & Olga V. Novikova & Evgenii A. Konnikov, 2021. "Energy Evolution: Forecasting the Development of Non-Conventional Renewable Energy Sources and Their Impact on the Conventional Electricity System," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    2. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    3. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    4. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
    5. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    6. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    7. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    8. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    9. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    10. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    11. Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2022. "Emissions reduction in a second-best world: On the long-term effects of overlapping regulations," Energy Economics, Elsevier, vol. 109(C).
    12. Andresen, Gorm B. & Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2014. "The potential for arbitrage of wind and solar surplus power in Denmark," Energy, Elsevier, vol. 76(C), pages 49-58.
    13. Andreas Coester & Marjan Hofkes & Elissaios Papyrakis, "undated". "Cross-border Electricity Transfers in the case of differentiated Renewable Energy Sources: A Simulation Analysis for Germany and Spain," Tinbergen Institute Discussion Papers 22-043/VIII, Tinbergen Institute.
    14. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    15. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    16. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    17. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    18. Singh, Antriksh & Frei, Thomas & Chokani, Ndaona & Abhari, Reza S., 2016. "Impact of unplanned power flows in interconnected transmission systems – Case study of Central Eastern European region," Energy Policy, Elsevier, vol. 91(C), pages 287-303.
    19. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    20. Otsuki, Takashi & Mohd Isa, Aishah Binti & Samuelson, Ralph D., 2016. "Electric power grid interconnections in Northeast Asia: A quantitative analysis of opportunities and challenges," Energy Policy, Elsevier, vol. 89(C), pages 311-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12424-14181:d:60696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.