IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12328-12572d58357.html
   My bibliography  Save this article

On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

Author

Listed:
  • Bruno Merk

    (Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany
    Center for Materials and Structure, University of Liverpool, Liverpool, Merseyside L69 3BX, UK)

  • Dzianis Litskevich

    (Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden 01328, Germany)

Abstract

An efficient burning of the plutonium produced during light water reactor (LWR) operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX) fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA) project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

Suggested Citation

  • Bruno Merk & Dzianis Litskevich, 2015. "On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study," Energies, MDPI, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12328-12572:d:58357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12328/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Merk & Dzianis Litskevich & Karl R. Whittle & Mark Bankhead & Richard J. Taylor & Dan Mathers, 2017. "On a Long Term Strategy for the Success of Nuclear Power," Energies, MDPI, vol. 10(7), pages 1-21, June.
    2. Bruno Merk & Anna Detkina & Dzianis Litskevich & Omid Noori-kalkhoran & Lakshay Jain & Gregory Cartland-Glover, 2022. "A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for iMAGINE," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12328-12572:d:58357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.