An Online Learning Control Strategy for Hybrid Electric Vehicle Based on Fuzzy Q-Learning
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ye, Yiming & Wang, Hanchen & Xu, Bin & Zhang, Jiangfeng, 2023. "An imitation learning-based energy management strategy for electric vehicles considering battery aging," Energy, Elsevier, vol. 283(C).
- Jemma J. Makrygiorgou & Antonio T. Alexandridis, 2019. "Power Electronic Control Design for Stable EV Motor and Battery Operation during a Route," Energies, MDPI, vol. 12(10), pages 1-21, May.
- Zou, Runnan & Fan, Likang & Dong, Yanrui & Zheng, Siyu & Hu, Chenxing, 2021. "DQL energy management: An online-updated algorithm and its application in fix-line hybrid electric vehicle," Energy, Elsevier, vol. 225(C).
- Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Ming Ye & Yitao Long & Yi Sui & Yonggang Liu & Qiao Li, 2019. "Active Control and Validation of the Electric Vehicle Powertrain System Using the Vehicle Cluster Environment," Energies, MDPI, vol. 12(19), pages 1-21, September.
- Chaoying Xia & Zhiming DU & Cong Zhang, 2017. "A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-23, July.
- Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
- Wang, Hanchen & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2023. "A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle," Energy, Elsevier, vol. 266(C).
- Muhammad Awais & Laiq Khan & Said Ghani Khan & Qasim Awais & Mohsin Jamil, 2023. "Adaptive Neural Network Q-Learning-Based Full Recurrent Adaptive NeuroFuzzy Nonlinear Control Paradigms for Bidirectional-Interlinking Converter in a Grid-Connected Hybrid AC-DC Microgrid," Energies, MDPI, vol. 16(4), pages 1-40, February.
- Feiyan Qin & Guoqing Xu & Yue Hu & Kun Xu & Weimin Li, 2017. "Stochastic Optimal Control of Parallel Hybrid Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.
More about this item
Keywords
hybrid electric vehicle; fuzzy Q-learning (FQL) control strategy; Q *( x ; u ) estimator network (QEN); fuzzy parameters tuning (FPT);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11167-11186:d:56841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.