IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i7p4116-4139d37564.html
   My bibliography  Save this article

Analysis of Occupants’ Visual Perception to Refine Indoor Lighting Environment for Office Tasks

Author

Listed:
  • Ji-Hyun Lee

    (Graduate School of Culture Technology, Korea Advanced Institute of Science & Technology, Daejeon 305-701, Korea)

  • Jin Woo Moon

    (Department of Building & Plant Engineering, Hanbat National University, Daejeon 305-719, Korea)

  • Sooyoung Kim

    (Department of Interior Architecture & Built Environment, Yonsei University, Seoul 120-749, Korea)

Abstract

The combined effects of color temperature and illuminance in a small office on visual response and mood under various lighting conditions were examined in this study. Visual annoyance tests were conducted using a sample of 20 subjects in a full-scale mock-up test space. Computer and paper-based reading tasks were conducted for 500 lx and 750 lx illuminance levels under 3,000 K, 4,000 K and 6,500 K conditions. Two hypotheses were considered for the test in this study. The primary hypothesis was that visual perception is affected by the color temperatures of light sources. The secondary hypothesis was that better moods, such as relaxed and cozy feelings, are associated with low color temperatures given equal illuminance levels. The visual environment under the 3,000 K condition was characterized by glare and brightness, resulting in visual discomfort when target illuminance was higher than 500 lx. Occupants preferred 500 lx under the 6,500 K condition, and 500 lx and 750 lx under the 4,000 K condition, reporting better visual satisfaction when performing office tasks. Prediction models for visual comfort suggest that the less that subjects are visually bothered by light during tasks, the more visual comfort they feel. User satisfaction with light source color is critical for the prediction of visual comfort under different lighting conditions. Visual comfort was the most influential factor on mood. Lower color temperature was associated with better mood at lower illuminance levels, while higher color temperature was preferred at higher illuminance levels.

Suggested Citation

  • Ji-Hyun Lee & Jin Woo Moon & Sooyoung Kim, 2014. "Analysis of Occupants’ Visual Perception to Refine Indoor Lighting Environment for Office Tasks," Energies, MDPI, vol. 7(7), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:7:p:4116-4139:d:37564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/7/4116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/7/4116/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schröter, Iris & Mergenthaler, Marcus, 2023. "Emotional response to pictures of farm animals: Influence of picture content and recipient characteristics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 14(02), June.
    2. Alfonso Gago-Calderón & Manuel Jesús Hermoso-Orzáez & Jose Ramon De Andres-Diaz & Guillermo Redrado-Salvatierra, 2018. "Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers," Energies, MDPI, vol. 11(4), pages 1-17, April.
    3. Dušan Katunský & Erika Dolníková & Bystrík Dolník, 2018. "Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    4. Wonyoung Yang & Jin Yong Jeon, 2020. "Effects of Correlated Colour Temperature of LED Light on Visual Sensation, Perception, and Cognitive Performance in a Classroom Lighting Environment," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    5. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:7:p:4116-4139:d:37564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.