IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i12p8095-8115d43028.html
   My bibliography  Save this article

Improved Control Strategy for Microgrid Ultracapacitor Energy Storage Systems

Author

Listed:
  • Xiaobo Dou

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China)

  • Xiangjun Quan

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Zaijun Wu

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Minqiang Hu

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Jianlong Sun

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China)

  • Kang Yang

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China)

  • Minhui Xu

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China)

Abstract

Ultracapacitors (UCs), with their features of high power density and high current charge-discharge, have become the best choice for dynamic power compensation to improve the stability of microgrids and are increasingly being applied in microgrids. This paper presents the control of an energy storage system (ESS) based on ultracapacitors in the context of grid-connected microgrids. The ESS is composed of DC/AC and DC/DC converters tied by a dc link. An improved dynamic model for the ESS is proposed. Based on the proposed model a Proportional-Integral-Resonant (PIR) DC link voltage controller is proposed to maintain the DC link voltage through the charging-discharging control of ultracapacitors, capable of working properly under all operating conditions. An extra double frequency component is injected into the UC current by a R controller to dynamically compensate for DC instantaneous power and double frequency AC instantaneous power due to unbalanced grid conditions and disturbances. This feature maintains the DC link voltage constant under unbalanced conditions and increases the degrees of freedom of the DC/AC converter and thus facilitates the application of UCs in microgrids. Simulation and experimental results verify the effectiveness of the proposed control strategy.

Suggested Citation

  • Xiaobo Dou & Xiangjun Quan & Zaijun Wu & Minqiang Hu & Jianlong Sun & Kang Yang & Minhui Xu, 2014. "Improved Control Strategy for Microgrid Ultracapacitor Energy Storage Systems," Energies, MDPI, vol. 7(12), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8095-8115:d:43028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/12/8095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/12/8095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    2. Danny Ochoa & Sergio Martinez, 2018. "Proposals for Enhancing Frequency Control in Weak and Isolated Power Systems: Application to the Wind-Diesel Power System of San Cristobal Island-Ecuador," Energies, MDPI, vol. 11(4), pages 1-25, April.
    3. Yiqi Liu & Jianze Wang & Ningning Li & Yu Fu & Yanchao Ji, 2015. "Enhanced Load Power Sharing Accuracy in Droop-Controlled DC Microgrids with Both Mesh and Radial Configurations," Energies, MDPI, vol. 8(5), pages 1-15, April.
    4. Ming-Tse Kuo & Ming-Chang Tsou, 2015. "Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems," Energies, MDPI, vol. 8(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    2. Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
    3. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    4. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    5. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    6. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    7. Moradi, Mohammad H. & Foroutan, Vahid Bahrami & Abedini, Mohammad, 2017. "Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 248-262.
    8. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    9. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Haisheng Hong & Quanyuan Jiang, 2019. "Model Predictive Control-Based Coordinated Control Algorithm with a Hybrid Energy Storage System to Smooth Wind Power Fluctuations," Energies, MDPI, vol. 12(23), pages 1-17, December.
    11. Saikia, Papumoni & Das, Nipankumar & Buragohain, Mrinal, 2024. "Robust energy storage system for stable in wind and solar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    13. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    14. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    15. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    16. Makhsoos, Ashkan & Mousazadeh, Hossein & Mohtasebi, Seyed Saeid & Abdollahzadeh, Mohammadreza & Jafarbiglu, Hamid & Omrani, Elham & Salmani, Yousef & Kiapey, Ali, 2018. "Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle," Energy, Elsevier, vol. 148(C), pages 362-372.
    17. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Ren, Jingzheng, 2018. "Sustainability prioritization of energy storage technologies for promoting the development of renewable energy: A novel intuitionistic fuzzy combinative distance-based assessment approach," Renewable Energy, Elsevier, vol. 121(C), pages 666-676.
    19. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    20. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8095-8115:d:43028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.