IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i9p4799-4829d28764.html
   My bibliography  Save this article

Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine

Author

Listed:
  • Ping Zheng

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Zhiyi Song

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Jingang Bai

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Chengde Tong

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Bin Yu

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

Abstract

Double rotor machine, an electronic continuously variable transmission, has great potential in application of hybrid electric vehicles (HEVs), wind power and marine propulsion. In this paper, an axial magnetic-field-modulated brushless double rotor machine (MFM-BDRM), which can realize the speed decoupling between the shaft of the modulating ring rotor and that of the permanent magnet rotor is proposed. Without brushes and slip rings, the axial MFM-BDRM offers significant advantages such as excellent reliability and high efficiency. Since the number of pole pairs of the stator is not equal to that of the permanent magnet rotor, which differs from the traditional permanent magnet synchronous machine, the operating principle of the MFM-BDRM is deduced. The relations of corresponding speed and toque transmission are analytically discussed. The cogging toque characteristics, especially the order of the cogging torque are mathematically formulated. Matching principle of the number of pole pairs of the stator, that of the permanent magnet rotor and the number of ferromagnetic pole pieces is inferred since it affects MFM-BDRM’s performance greatly, especially in the respect of the cogging torque and electromagnetic torque ripple. The above analyses are assessed with the three-dimensional (3D) finite-element method (FEM).

Suggested Citation

  • Ping Zheng & Zhiyi Song & Jingang Bai & Chengde Tong & Bin Yu, 2013. "Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine," Energies, MDPI, vol. 6(9), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:9:p:4799-4829:d:28764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/9/4799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/9/4799/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    2. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.
    3. Yubin Wang & Guangyong Yang & Xinkai Zhu & Xianglin Li & Wenzhong Ma, 2018. "Electromagnetic Characteristics Analysis of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(5), pages 1-13, May.
    4. Yubin Wang & Chenchen Zhao & Wei Xu & Xiaodong Zhang, 2018. "Vibroacoustic Prediction of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(10), pages 1-15, September.
    5. Xianglin Li & K. T. Chau & Yubin Wang, 2016. "Modeling of a Field-Modulated Permanent-Magnet Machine," Energies, MDPI, vol. 9(12), pages 1-15, December.
    6. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    7. Hui Yang & Heyun Lin & Zi-Qiang Zhu & Shuhua Fang & Yunkai Huang, 2016. "A Dual-Consequent-Pole Vernier Memory Machine," Energies, MDPI, vol. 9(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:9:p:4799-4829:d:28764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.