IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i5p2481-2500d25731.html
   My bibliography  Save this article

Stochastic Rating of Storage Systems in Isolated Networks with Increasing Wave Energy Penetration

Author

Listed:
  • Elisabetta Tedeschi

    (Marine Energy Area, Tecnalia Research & Innovation, Parque Tecnológico de Bizkaia, C/Geldo, Edificio 700, Derio 48160, Spain
    Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), O.S. Bragstads plass 2, Trondheim 7491, Norway)

  • Jonas Sjolte

    (Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), O.S. Bragstads plass 2, Trondheim 7491, Norway
    Fred Olsen, Fred. Olsens Gate 2, Oslo 0152, Norway)

  • Marta Molinas

    (Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), O.S. Bragstads plass 2, Trondheim 7491, Norway)

  • Maider Santos

    (Marine Energy Area, Tecnalia Research & Innovation, Parque Tecnológico de Bizkaia, C/Geldo, Edificio 700, Derio 48160, Spain)

Abstract

The future success of wave energy in the renewable energy mix depends on the technical advancements of the specific components and systems, on the grid access availability and, ultimately, on the economical profitability of the investment. Small and remote islands represent an ideal framework for wave energy exploitation, due both to resource availability and to the current high cost of electricity that mostly relies on diesel generation. Energy storage can be the enabling technology to match the intermittent power generation from waves to the energy needs of the local community. In this paper real data from La Palma, in the Canary Islands, are used as a basis for the considered test case. As a first step the study quantifies the expected power production from Wave Energy Converter (WEC) arrays, based on data from the Lifesaver point absorber developed by Fred. Olsen. Then, a stochastic optimization approach is applied to evaluate the convenience of energy storage introduction for reducing the final cost of energy and to define the corresponding optimal rating of the storage devices.

Suggested Citation

  • Elisabetta Tedeschi & Jonas Sjolte & Marta Molinas & Maider Santos, 2013. "Stochastic Rating of Storage Systems in Isolated Networks with Increasing Wave Energy Penetration," Energies, MDPI, vol. 6(5), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:5:p:2481-2500:d:25731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/5/2481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/5/2481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Suazo-Martínez & Eduardo Pereira-Bonvallet & Rodrigo Palma-Behnke, 2014. "A Simulation Framework for Optimal Energy Storage Sizing," Energies, MDPI, vol. 7(5), pages 1-23, May.
    2. Haas, J. & Nowak, W. & Palma-Behnke, R., 2019. "Multi-objective planning of energy storage technologies for a fully renewable system: Implications for the main stakeholders in Chile," Energy Policy, Elsevier, vol. 126(C), pages 494-506.
    3. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    4. José A. Domínguez-Navarro & Elisabetta Tedeschi, 2016. "Evaluation of the Fluid Model Approach for the Sizing of Energy Storage in Wave-Wind Energy Systems," Energies, MDPI, vol. 9(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Kelly & Thomas Dooley & John Campbell & John V. Ringwood, 2013. "Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC), V-Shaped Floating Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-33, August.
    2. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    3. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    4. Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
    5. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    6. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    7. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    9. Stoutenburg, Eric D. & Jenkins, Nicholas & Jacobson, Mark Z., 2010. "Power output variations of co-located offshore wind turbines and wave energy converters in California," Renewable Energy, Elsevier, vol. 35(12), pages 2781-2791.
    10. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2024. "Future costs of key emerging offshore renewable energy technologies," Renewable Energy, Elsevier, vol. 222(C).
    11. Rosati, Marco & Ringwood, John V., 2023. "Control co-design of power take-off and bypass valve for OWC-based wave energy conversion systems," Renewable Energy, Elsevier, vol. 219(P2).
    12. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    13. Wei, Zhiwen & Shi, Hongda & Cao, Feifei & Yu, Mingqi & Li, Ming & Chen, Zhen & Liu, Peng, 2024. "Study on the power performance of wave energy converters mounted around an offshore wind turbine jacket platform," Renewable Energy, Elsevier, vol. 221(C).
    14. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
    15. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    16. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    17. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    18. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Saqib Iqbal & Kamyar Mehran, 2024. "Data-Driven Management Systems for Wave-Powered Renewable Energy Communities," Energies, MDPI, vol. 17(5), pages 1-19, March.
    20. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:5:p:2481-2500:d:25731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.