IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i2p619-633d23191.html
   My bibliography  Save this article

Use of Isomerization and Hydroisomerization Reactions to Improve the Cold Flow Properties of Vegetable Oil Based Biodiesel

Author

Listed:
  • Stephen J. Reaume

    (Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T1Z3, Canada)

  • Naoko Ellis

    (Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T1Z3, Canada)

Abstract

Biodiesel is a promising alternative to petroleum diesel with the potential to reduce overall net CO 2 emissions. However, the high cloud point of biodiesel must be reduced when used in cold climates. We report on the use of isomerization and hydroisomerization reactions to reduce the cloud point of eight different fats and oils. Isomerization was carried out at 260 °C and 1.5 MPa H 2 pressure utilizing beta zeolite catalyst, while hydroisomerization was carried out at 300 °C and 4.0 MPa H 2 pressure utilizing 0.5 wt % Pt-doped beta zeolite catalyst. Reaction products were tested for cloud point and flow properties, in addition to catalyst reusability and energy requirements. Results showed that high unsaturated fatty acid biodiesels increased in cloud point, due to the hydrogenation side reaction. In contrast, low unsaturated fatty acid biodiesels yielded cloud point reductions and overall improvement in the flow properties. A maximum cloud point reduction of 12.9 °C was observed with coconut oil as the starting material. Results of the study have shown that branching can reduce the cloud point of low unsaturated fatty acid content biodiesel.

Suggested Citation

  • Stephen J. Reaume & Naoko Ellis, 2013. "Use of Isomerization and Hydroisomerization Reactions to Improve the Cold Flow Properties of Vegetable Oil Based Biodiesel," Energies, MDPI, vol. 6(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:619-633:d:23191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/2/619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/2/619/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    3. Eugenia Guadalupe Ortiz Lechuga & Mauro Rodríguez Zúñiga & Katiushka Arévalo Niño, 2020. "Efficiency Evaluation on the Influence of Washing Methods for Biodiesel Produced from High Free Fatty Acid Waste Vegetable Oils through Selected Quality Parameters," Energies, MDPI, vol. 13(23), pages 1-14, November.
    4. Maghrebi, R. & Buffi, M. & Bondioli, P. & Chiaramonti, D., 2021. "Isomerization of long-chain fatty acids and long-chain hydrocarbons: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Shanmugam Palanisamy & Börje Sten Gevert & Pranav Sankaran & Kannan Kandasamy, 2019. "Produce Low Aromatic Contents with Enhanced Cold Properties of Hydrotreated Renewable Diesel Using Pt/Alumina-Beta-Zeolite: Reaction Path Studied via Monoaromatic Model Compound," Energies, MDPI, vol. 12(15), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:619-633:d:23191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.