IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i11p1858-1879d14617.html
   My bibliography  Save this article

Output Feedback Dissipation Control for the Power-Level of Modular High-Temperature Gas-Cooled Reactors

Author

Listed:
  • Zhe Dong

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

Abstract

Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR) is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e. , the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis.

Suggested Citation

  • Zhe Dong, 2011. "Output Feedback Dissipation Control for the Power-Level of Modular High-Temperature Gas-Cooled Reactors," Energies, MDPI, vol. 4(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:11:p:1858-1879:d:14617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/11/1858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/11/1858/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunlong Zhu & Zhe Dong & Xiaojin Huang & Yujie Dong & Yajun Zhang & Zuoyi Zhang, 2022. "Passivity-Based Power-Level Control of Nuclear Reactors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    2. Zhe Dong, 2012. "Dynamic Output Feedback Power-Level Control for the MHTGR Based On Iterative Damping Assignment," Energies, MDPI, vol. 5(6), pages 1-34, June.
    3. Zhe Dong, 2013. "Nonlinear Power-Level Control of the MHTGR Only with the Feedback Loop of Helium Temperature," Energies, MDPI, vol. 6(2), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:11:p:1858-1879:d:14617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.