IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i4p866-885d8062.html
   My bibliography  Save this article

Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

Author

Listed:
  • Jun Young Kim

    (Corporate R&D Center, Samsung SDI Co. Ltd., 428-5 Gongse-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-577, Korea
    Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

  • Dae Young Lim

    (Fusion Textile Technology Team, Korea Institute of Industrial Technology, 1271-18 Sa-1 dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-173, Korea)

Abstract

This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

Suggested Citation

  • Jun Young Kim & Dae Young Lim, 2010. "Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery," Energies, MDPI, vol. 3(4), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:4:p:866-885:d:8062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/4/866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/4/866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Croce & G. B. Appetecchi & L. Persi & B. Scrosati, 1998. "Nanocomposite polymer electrolytes for lithium batteries," Nature, Nature, vol. 394(6692), pages 456-458, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich Schadeck & Kanat Kyrgyzbaev & Heiko Zettl & Thorsten Gerdes & Ralf Moos, 2018. "Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries," Energies, MDPI, vol. 11(4), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhijun & Xie, Zhengkun & Yoshida, Akihiro & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2019. "Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 367-385.
    2. Lukman Noerochim & Wahyu Caesarendra & Abdulloh Habib & Widyastuti & Suwarno & Yatim Lailun Ni’mah & Achmad Subhan & Bambang Prihandoko & Buyung Kosasih, 2020. "Role of TiO 2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li 4 Ti 5 O 12 -TiO 2 Microrod as an Anode for Lithium-Ion Battery," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    5. Alonso Rodríguez-Navarro & Ricardo Brito, 2022. "The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2871-2896, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:4:p:866-885:d:8062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.