Author
Listed:
- Salah Abbas Taha
(Electrical Engineering Technical College, Middle Technical University, Baghdad 10074, Iraq)
- Zuhair S. Al-Sagar
(Department of Renewable Energy Techniques, Middle Technical University, Baghdad 10074, Iraq)
- Mohammed Abdulla Abdulsada
(Electrical Engineering Technical College, Middle Technical University, Baghdad 10074, Iraq)
- Mohammed Alruwaili
(Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia)
- Moustafa Ahmed Ibrahim
(Electrical Engineering Department, University of Business and Technology, Jeddah 23435, Saudi Arabia)
Abstract
A grid-tied inverter needs excellent maximum power point tracking (MPPT) topology to extract the maximum energy from PV panels regarding energy creation. An efficient MPPT ensures that grid codes are met, maintains power quality and system reliability, minimizes power losses, and suppresses rapid response to power fluctuations due to solar irradiance. Moreover, appropriate MPPT enhances economic returns by increasing energy royalties and ensures high power quality with reduced harmonic distortion. For these reasons, an improved hybrid MPPT technique for a grid-tied solar system is presented based on particle swarm optimization (PSO) and grey wolf optimizer (GWO-PSO) to achieve these objectives. The proposed method is tested under MATLAB/Simulink 2024a for a 100 kW PV array connected with a boost converter to link with a voltage source converter (VSC). The simulation results show that the proposed GWO-PSO can reduce the overshoot on rise time along with settling time, meaning less time is wasted within the grid power system. Moreover, the suggested method is compared with PSO, GWO, and horse herd optimization (HHO) under different weather conditions. The results show that the other algorithms respond more slowly and exhibit higher overshoot, which can be counterproductive. These comparisons validate the proposed method as more accurate, demonstrating that it can enhance the real power quality that is transferred to the grid.
Suggested Citation
Salah Abbas Taha & Zuhair S. Al-Sagar & Mohammed Abdulla Abdulsada & Mohammed Alruwaili & Moustafa Ahmed Ibrahim, 2025.
"Design of an Efficient MPPT Topology Based on a Grey Wolf Optimizer-Particle Swarm Optimization (GWO-PSO) Algorithm for a Grid-Tied Solar Inverter Under Variable Rapid-Change Irradiance,"
Energies, MDPI, vol. 18(8), pages 1-21, April.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:8:p:1997-:d:1633684
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1997-:d:1633684. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.