Author
Listed:
- Yuheng Zhou
(Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)
- Zhouhang Li
(Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)
- Yuling Zhai
(State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China)
Abstract
The supercritical carbon dioxide Brayton cycle has been identified as being applicable in a wide variety of applications, and printed circuit heat exchangers (PCHEs) are widely used in these applications due to their good compactness and high thermal efficiency. A PCHE with hybrid-size unit channels has been proposed and found capable of improving the heat transfer performance, but most results were obtained at non-consistent total volume and mass flow rate. Therefore, given the space constraints of heat exchangers in supercritical CO 2 Brayton cycles, this study investigates the application of standard-size and hybrid-size unit channel configurations under different hot-to-cold fluid thermal resistance ratios while maintaining a fixed total volume and consistent total mass flow rate. The results demonstrate that the hybrid-size unit channel configuration fails to enhance heat transfer. The heat transfer rate per volume exhibits a marginal 5.2% reduction at smaller thermal resistance ratios and a drastic 28.9% degradation at larger thermal resistance ratios. The hybrid-size channel configuration significantly improves the pressure drop per unit length on the hot side, achieving maximum reductions of 80.3% and 79.7% under the two thermal resistance ratios, respectively. The enhancement magnitude on the hot side outweighs the increased pressure drop on the cold side. Simultaneously, the ratio of average heat transfer rate to total pumping power exhibits significant differences between the two channel configurations under varying thermal resistance ratios. Under scenarios with substantial thermal resistance disparities, the hybrid-size unit channel configuration achieves a maximum 356.2% improvement in the ratio compared to the identical-size unit channel configuration, whereas balanced thermal resistance ratios lead to a degradation in overall performance.
Suggested Citation
Yuheng Zhou & Zhouhang Li & Yuling Zhai, 2025.
"Thermal–Hydraulic Performance Comparison of Printed Circuit Heat Exchangers with Identical-Size and Hybrid-Size Unit Channels,"
Energies, MDPI, vol. 18(8), pages 1-21, April.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:8:p:1947-:d:1632269
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1947-:d:1632269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.