Author
Listed:
- Zhebin Sun
(Inner Mongolia Power Economic and Technical Research Institute Branch, Hohhot 010020, China
School of Electrical Engineering, Northeast Electric Power University, Jilin 132000, China)
- Sileng A
(Inner Mongolia Power (Group) Co., Ltd., Hohhot 010020, China)
- Xia Sun
(Inner Mongolia Power Economic and Technical Research Institute Branch, Hohhot 010020, China)
- Shuang Zhang
(School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China)
- Dinghua Liu
(Inner Mongolia Power (Group) Co., Ltd., Hohhot 010020, China)
- Wenquan Shao
(School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China)
Abstract
The distribution network line has the risk of an unsuccessful three-phase blind reclosing in permanent fault. Based on the response of the inverter of the distributed generation (DG) to the short-term low-frequency voltage disturbance to the line to be detected, this paper proposes a non-fault identification method for the distribution network before three-phase reclosing, based on model parameter identification. During the disturbance period, when there is no fault after the arc is extinguished, the detection line is three-phase symmetrical, and each phase-to-ground loop is its own loop resistance and inductance linear network, which is independent of the fault location, transition resistance and other factors. Furthermore, the R–L network without fault is used as the identification reference model, and the least squares algorithm is used to identify the resistance and inductance parameters of each phase loop of the detection line by using the voltage and current response information of the line side during the excitation period so as to identify the fault state. The non-fault criterion before three-phase reclosing, characterized by the difference between the calculated value of resistance and inductance and the corresponding actual value, is designed. Finally, PSCAD is used to build a distribution network with DG for verification, and simulations under different fault locations and transition resistances are carried out. The results show that when the line is in a non-fault state, the parameter identification results of the three phase-to-ground circuits are highly consistent with the true value; that is, the non-fault state is determined. When the fault continues, there is a large deviation between the parameter identification results of at least one phase-to-ground loop and the corresponding real value, which does not meet the condition of the non-fault criterion. The method in this paper is more sensitive than the detection method using response voltage. Moreover, it is not necessary to add additional disturbance sources, which is expected to improve the economy and feasibility of three-phase adaptive reclosing applications for distribution lines with a large number of DGs.
Suggested Citation
Zhebin Sun & Sileng A & Xia Sun & Shuang Zhang & Dinghua Liu & Wenquan Shao, 2025.
"Non-Fault Detection Scheme Before Reclosing Using Parameter Identification for an Active Distribution Network,"
Energies, MDPI, vol. 18(8), pages 1-18, April.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:8:p:1932-:d:1631890
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1932-:d:1631890. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.