Author
Listed:
- Ang Yang
(School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China)
- Ang Li
(School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China)
- Zongxing Li
(School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China)
- Yuhui Sun
(UniSA STEM, University of South Australia, Adelaide, SA 5095, Australia)
- Jing Gao
(UniSA STEM, University of South Australia, Adelaide, SA 5095, Australia)
Abstract
In order to realize green and low-carbon transformation, some ports have explored the path of sustainable equipment upgrading by adjusting the energy structure of yard cranes in recent years. However, there are multiple uncertainties in the investment process of hydrogen-powered yard cranes, and the existing valuation methods fail to effectively deal with these dynamic changes and lack scientifically sound decision support tools. To address this problem, this study constructs a multi-factor real options model that integrates the dynamic uncertainties of hydrogen price, carbon price, and technology maturity. In this study, a geometric Brownian motion is used for hydrogen price simulation, a Markov chain model with jump diffusion term and stochastic volatility is used for carbon price simulation, and a learning curve method is used to quantify the evolution of technology maturity. Aiming at the long investment cycle of ports, a hybrid option strategy of “American and European” is designed, and the timing and scale of investment are dynamically optimized by Monte Carlo simulation and least squares regression. Based on the empirical analysis of Qingdao Port, the results show that the optimal investment plan for hydrogen-powered yard cranes project under the framework of a multi-factor option model is to use an American-type option to maintain moderate flexibility in the early stage, and to use a European-type option to lock in the return in the later stage. The study provides decision support for the green development of ports and enhances economic returns and carbon emission reduction benefits.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1928-:d:1631859. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.