IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1899-d1630657.html
   My bibliography  Save this article

Multichannel Attention-Based TCN-GRU Network for Remaining Useful Life Prediction of Aero-Engines

Author

Listed:
  • Jiabao Zou

    (School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
    Current address: No. 2 Linggong Road, Ganjing District, Dalian, China.)

  • Ping Lin

    (School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

Predictive maintenance is a cornerstone of modern aerospace engineering, critical for maintaining the reliability and operational performance of aircraft engines. As a major component of prognostics and health management (PHM) technology, the accurate prediction of remaining useful life (RUL) enables proactive maintenance strategies, minimizes downtime, reduces costs, and enhances safety. This paper presents an innovative RUL prediction model designed specifically for aircraft engine applications. The model combines a temporal convolutional network (TCN) with multichannel attention and a gated recurrent unit (GRU) network. The framework begins with data pre-processing, followed by temporal feature extraction through an overlaying TCN network. Then, a multichannel attention mechanism fuses information from multiple TCN blocks, capturing rich feature representations. Finally, the fused data are processed by the GRU network to deliver precise RUL predictions. An improvement of at least 8.1% and 12.6% has been observed in two prediction metrics for the CMAPSS dataset when compared to other models.

Suggested Citation

  • Jiabao Zou & Ping Lin, 2025. "Multichannel Attention-Based TCN-GRU Network for Remaining Useful Life Prediction of Aero-Engines," Energies, MDPI, vol. 18(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1899-:d:1630657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1899/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1899-:d:1630657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.