IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1826-d1628095.html
   My bibliography  Save this article

Multi-Energy Static Modeling Approaches: A Critical Overview

Author

Listed:
  • Gianluigi Migliavacca

    (Ricerca sul Sistema Energetico (RSE), via Rubattino 54, I-20134 Milan, Italy)

Abstract

In Europe and elsewhere in the world, current ambitious decarbonization targets push towards a gradual decommissioning of all fossil-fuel-based dispatchable electrical generation and, at the same time, foster a gradual increase in the penetration of Renewable Energy Sources (RES). Moreover, considerations tied to decarbonization as well as to the security of supply, following recent geo-political events, call for a gradual replacement of gas appliances with electricity-based ones. As RES generation is characterized by a variable generation pattern and as the electric carrier is characterized by scarce intrinsic flexibility, and since storage capabilities through electrochemical batteries, as well as demand-side flexibility contributions, remain rather limited, it is quite natural to think of other energy carriers as possible service providers for the electricity system. Gas and heat networks and, in the future, hydrogen networks could provide storage services for the electricity system. This could allow increasing the amount of RES penetration to be managed safely by the electric system without incurring blackouts and avoiding non-economically motivated grid reinforcements to prevent the curtailment of RES generation peaks. What is explained above calls for a new approach, both in electricity network dispatch simulations and in grid-planning studies, which extends the simulation domain to other carriers (i.e., gas, heat, hydrogen) so that a global optimal solution is found. This simulation branch, called multi-energy or multi-carrier, has been gaining momentum in recent years. The present paper aims at describing the most important approaches to static ME modeling by comparing the pros and cons of all of them with a holistic approach. The style of this paper is that of a tutorial aimed at providing some guidance and a few bibliographic references to those who are interested in approaching this theme in the next years.

Suggested Citation

  • Gianluigi Migliavacca, 2025. "Multi-Energy Static Modeling Approaches: A Critical Overview," Energies, MDPI, vol. 18(7), pages 1-33, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1826-:d:1628095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1826/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1826-:d:1628095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.