IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1813-d1627627.html
   My bibliography  Save this article

Heating, Ventilation, and Air Conditioning (HVAC) Temperature and Humidity Control Optimization Based on Large Language Models (LLMs)

Author

Listed:
  • Xuanrong Zhu

    (College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Hui Li

    (College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

Abstract

Heating, Ventilation, and Air Conditioning (HVAC) systems primarily consist of pre-cooling air handling units (PAUs), air handling units (AHUs), and air ducts. Existing HVAC control methods, such as Proportional–Integral–Derivative (PID) control or Model Predictive Control (MPC), face limitations in understanding high-level information, handling rare events, and optimizing control decisions. Therefore, to address the various challenges in temperature and humidity control, a more sophisticated control approach is required to make high-level decisions and coordinate the operation of HVAC components. This paper utilizes Large Language Models (LLMs) as a core component for interpreting complex operational scenarios and making high-level decisions. A chain-of-thought mechanism is designed to enable comprehensive reasoning through LLMs, and an algorithm is developed to convert LLM decisions into executable HVAC control commands. This approach leverages adaptive guidance through parameter matrices to seamlessly integrate LLMs with underlying MPC controllers. Simulated experimental results demonstrate that the improved control strategy, optimized through LLM-enhanced Model Predictive Control (MPC), significantly enhances the energy efficiency and stability of HVAC system control. During the summer conditions, energy consumption is reduced by 33.3% compared to the on–off control strategy and by 6.7% relative to the conventional low-level MPC strategy. Additionally, during the system startup phase, energy consumption is slightly reduced by approximately 17.1% compared to the on–off control strategy. Moreover, the proposed method achieves superior temperature stability, with the mean squared error (MSE) reduced by approximately 35% compared to MPC and by 45% relative to on–off control.

Suggested Citation

  • Xuanrong Zhu & Hui Li, 2025. "Heating, Ventilation, and Air Conditioning (HVAC) Temperature and Humidity Control Optimization Based on Large Language Models (LLMs)," Energies, MDPI, vol. 18(7), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1813-:d:1627627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1813/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1813-:d:1627627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.