Author
Listed:
- Jiachuan Shi
(Shandong Key Laboratory of Smart Buildings and Energy Efficiency, School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
- Sining Hu
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
- Rao Fu
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
- Quan Zhang
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
Abstract
Optimizing the operation of active distribution networks (ADNs) has become more challenging because of the uncertainty created by the high penetration level of distributed photovoltaic (PV). From the convex optimization perspective, this paper proposes a two-layer optimization model to simplify the solution of the ADN optimal operation problem. Firstly, to pick out the ADN “key” nodes, a “key” nodes selection approach that used improved K-means clustering algorithm and two indexes (integrated voltage sensitivity and reactive power-balance degree) is introduced. Then, a two-layer ADN optimization model is built using various time scales. The upper layer is a long-time-scale model with on-load tap-changer transformer (OLTC) and capacitor bank (CB), and the lower layer is a short-time-scale optimization model with PV inverters and distributed energy storages (ESs). To take into account the PV users’ interests, maximizing PV active power output is added to the objective. Afterwards, under the application of the second-order cone programming (SOCP) power-flow model, a linearization method of OLTC model and its tap change frequency constraints are proposed. The linear OLTC model, together with the linear models of the other equipment, constructs a mixed-integer second-order cone convex optimization (MISOCP) model. Finally, the effectiveness of the proposed method is verified by solving the IEEE33 node system using the CPLEX solver.
Suggested Citation
Jiachuan Shi & Sining Hu & Rao Fu & Quan Zhang, 2025.
"Convex Optimization and PV Inverter Control Strategy-Based Research on Active Distribution Networks,"
Energies, MDPI, vol. 18(7), pages 1-19, April.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:7:p:1793-:d:1626962
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1793-:d:1626962. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.