IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1781-d1626562.html
   My bibliography  Save this article

AI-Driven Predictive Control for Dynamic Energy Optimization in Flying Cars

Author

Listed:
  • Mohammed Gronfula

    (Electrical Engineering Department, College of Engineering, Alasala Colleges, Dammam 31483, Saudi Arabia)

  • Khairy Sayed

    (Electrical Engineering Department, Sohag University, Sohag 82524, Egypt
    Electrical Engineering Department, Grove School of Engineering, City University of New York, New York, NY 10031, USA)

Abstract

This study presents an AI-driven energy management system (EMS) for a hybrid electric flying car, integrating multiple power sources—including solid-state batteries, Li-ion batteries, fuel cells, solar panels, and wind turbines—to optimize power distribution across various flight phases. The proposed EMS dynamically adjusts power allocation during takeoff, cruise, landing, and ground operations, ensuring optimal energy utilization while minimizing losses. A MATLAB-based simulation framework is developed to evaluate key performance metrics, including power demand, state of charge (SOC), system efficiency, and energy recovery through regenerative braking. The findings show that by optimizing renewable energy collecting, minimizing battery depletion, and dynamically controlling power sources, AI-based predictive control dramatically improves energy efficiency. While carbon footprint assessment emphasizes the environmental advantages of using renewable energy sources, SOC analysis demonstrates that regenerative braking prolongs battery life and lowers overall energy use. AI-optimized energy distribution also lowers overall operating costs while increasing reliability, according to life-cycle cost assessment (LCA), which assesses the economic sustainability of important components. Sensitivity analysis under sensor noise and environmental disturbances further validates system robustness, demonstrating that efficiency remains above 84% even under adverse conditions. These findings suggest that AI-enhanced hybrid propulsion can significantly improve the sustainability, economic feasibility, and real-world performance of future flying car systems, paving the way for intelligent, low-emission aerial transportation.

Suggested Citation

  • Mohammed Gronfula & Khairy Sayed, 2025. "AI-Driven Predictive Control for Dynamic Energy Optimization in Flying Cars," Energies, MDPI, vol. 18(7), pages 1-35, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1781-:d:1626562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1781/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1781-:d:1626562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.