IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1776-d1626352.html
   My bibliography  Save this article

A Single-Phase Modular Multilevel Converter Based on a Battery Energy Storage System for Residential UPS with Two-Level Active Balancing Control

Author

Listed:
  • Yang Wang

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Thomas Geury

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

This paper focuses on the development and experimental validation of a single-phase modular multilevel converter (MMC) based on a battery energy storage system (BESS) for residential uninterruptible power supply (UPS) with two-level active SoC balancing control. The configuration and mathematical modeling of the single-phase MMC-BESS are first presented, followed by the details of the control strategies, including dual-loop output voltage and current control in islanded mode, grid-connected control, circulating current control, and two-level active state-of-charge (SoC) balancing control. The design and optimization of the quasi-proportional-resonant (QPR) controllers were investigated by using particle swarm optimization (PSO). Simulation models were built to explore the operating characteristics of the UPS under islanded mode with an RL load and grid-connected mode and assess the control performance. A 500 W experimental prototype was developed and is herein presented, including results under different operating conditions of the MMC-BESS. The experimental results show that for both RL load and grid-connected tests, balancing was achieved. The response time to track the reference value was two grid periods (0.04 s). In the islanded mode test, the THD was 1.37% and 4.59% for the voltage and current, respectively, while in the grid-connected mode test, these values were 1.72% and 4.24% for voltage and current, respectively.

Suggested Citation

  • Yang Wang & Thomas Geury & Omar Hegazy, 2025. "A Single-Phase Modular Multilevel Converter Based on a Battery Energy Storage System for Residential UPS with Two-Level Active Balancing Control," Energies, MDPI, vol. 18(7), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1776-:d:1626352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1776/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1776-:d:1626352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.