Author
Listed:
- Sugunakar Mamidala
(School of Electronics Engineering, VIT-AP University, Amaravati 522241, Andhra Pradesh, India)
- Yellapragada Venkata Pavan Kumar
(School of Electronics Engineering, VIT-AP University, Amaravati 522241, Andhra Pradesh, India)
- Rammohan Mallipeddi
(Department of Artificial Intelligence, School of Electronics Engineering, Kyungpook National University, Daegu 37224, Republic of Korea)
Abstract
The rapid growth of electric vehicle (EV) adoption presents significant challenges in planning efficient charging infrastructure, including suboptimal station placement, energy consumption, and rising infrastructural costs. The conventional methods, such as grey wolf optimization (GWO), fail to address real-time user demand and dynamic factors like fluctuating grid loads and environmental impact. These approaches rely on fixed models, often leading to inefficient energy use, higher operational costs, and increased traffic congestion. This paper proposes a novel framework that integrates deep Q networks (DQNs) for real-time charging optimization, coupled with multimodal bioinspired algorithms like ant lion optimization (ALO) and moth flame optimization (MFO). Unlike conventional geographic placement models that overlook evolving travel patterns, this system dynamically adapts to user behavior, optimizing both onboard and offboard charging systems. The DQN enables continuous learning from changing demand and grid conditions, while ALO and MFO identify optimal station locations, reducing energy consumption and emissions. The proposed framework incorporates dynamic pricing and demand response strategies. These adjustments help balance energy usage, reducing costs and preventing overloading of the grid during peak times, offering real-time adaptability, optimized station placement, and energy efficiency. To improve the performance of the system, the proposed framework ensures more sustainable, cost-effective EV infrastructural planning, minimized environmental impacts, and enhanced charging efficiency. From the results for the proposed system, we recorded various performance parameters such as the installation cost, which decreased to USD 1200 per unit, i.e., a 20% cost efficiency increase, optimal energy utilization increases to 85% and 92% during peak hours and off-peak hours respectively, a charging slot availability increase to 95%, a 30% carbon emission reduction, and 95% performance retention under the stress condition. Further, the power quality is improved by reducing the sag, swell, flicker, and notch by 2 V, 3 V, 0.05 V, and 0.03 V, respectively, with an increase in efficiency to 89.9%. This study addresses critical gaps in real-time flexibility, cost-effective station deployment, and grid resilience by offering a scalable and intelligent EV charging solution.
Suggested Citation
Sugunakar Mamidala & Yellapragada Venkata Pavan Kumar & Rammohan Mallipeddi, 2025.
"Revolutionizing Electric Vehicle Charging Stations with Efficient Deep Q Networks Powered by Multimodal Bioinspired Analysis for Improved Performance,"
Energies, MDPI, vol. 18(7), pages 1-30, March.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:7:p:1750-:d:1625041
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1750-:d:1625041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.