IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1646-d1620247.html
   My bibliography  Save this article

Nonparametric Probabilistic Prediction of Ultra-Short-Term Wind Power Based on MultiFusion–ChronoNet–AMC

Author

Listed:
  • Yan Yan

    (State Grid Ningxia Electric Power Research Institute, Yinchuan 750011, China)

  • Yong Qian

    (State Grid Ningxia Electric Power Research Institute, Yinchuan 750011, China)

  • Yan Zhou

    (School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China)

Abstract

Accurate forecasting is crucial for enhancing the flexibility and controllability of power grids. Traditional forecasting methods mainly focus on modeling based on a single data source, which leads to an inability to fully capture the underlying relationships in wind power data. In addition, current models often lack dynamic adaptability to data characteristics, resulting in lower prediction accuracy and reliability under different time periods or weather conditions. To address the aforementioned issues, an ultra-short-term hybrid probabilistic prediction model based on MultiFusion, ChronoNet, and adaptive Monte Carlo (AMC) is proposed in this paper. By combining multi-source data fusion and a multiple-gated structure, the nonlinear characteristics and uncertainties of wind power under various input conditions are effectively captured by this model. Additionally, the AMC method is applied in this paper to provide comprehensive, accurate, and flexible ultra-short-term probabilistic predictions. Ultimately, experiments are conducted on multiple datasets, and the results show that the proposed model not only improves the accuracy of deterministic prediction but also enhances the reliability of probabilistic prediction intervals.

Suggested Citation

  • Yan Yan & Yong Qian & Yan Zhou, 2025. "Nonparametric Probabilistic Prediction of Ultra-Short-Term Wind Power Based on MultiFusion–ChronoNet–AMC," Energies, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1646-:d:1620247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1646/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1646-:d:1620247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.