Author
Listed:
- Daniel Reich
(Department of Operations Research, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA)
Abstract
As the demand for sustainable and resilient energy systems grows, providing planners with effective tools for microgrid design becomes increasingly important. This research addresses the need for such tools by introducing a new method for distributed energy resource sizing in microgrid capacity planning. The planning process begins with a comprehensive assessment of the required capacity based on a given set of power load requirements. Rather than providing a single solution, as is common in related works, the sizing method introduced in this paper efficiently identifies a wide range of microgrid design options that satisfy the stated power needs. The benefit of this multi-solution approach is that it allows decision makers to consider vastly different possibilities, such as varying levels of renewables and battery storage, and weigh trade-offs between these potential designs before selecting one or more solutions for further detailed design planning. The proposed method is constructed as a three-step heuristic search procedure: (1) an exhaustive search identifies an initial set of candidate solutions; (2) a global binary search builds a diverse set of microgrid design options; and (3) a local linear search refines those options. A computational experiment is presented to demonstrate the method’s effectiveness at identifying diverse solutions sets and its computational tractability. The results show that increasing the number of capacity levels considered per distributed energy resource from 11 to 41 increases the size and diversity of the microgrid design set; however, further increasing the number of capacity levels beyond that point is not beneficial. The method presented is implemented and released in Microgrid Planner, an open source software platform.
Suggested Citation
Daniel Reich, 2025.
"A Generalized Method for Rightsizing the Design of a Hybrid Microgrid,"
Energies, MDPI, vol. 18(7), pages 1-15, March.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:7:p:1643-:d:1619920
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1643-:d:1619920. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.