IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1524-d1615726.html
   My bibliography  Save this article

Evaluating Coal, RDF, and Ammonia Blends in Power Plants: Techno-Economic Insights and Coal Phase-Out Implications

Author

Listed:
  • Antonio Chavando

    (Department of Environment and Planning and Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
    Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
    Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Valter Bruno Silva

    (Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
    Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • João Sousa Cardoso

    (Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
    Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Daniela Eusebio

    (Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal)

Abstract

This comprehensive techno-economic analysis focuses on a proposed power plant that uses cleaner alternatives to traditional combustion methods. The study meticulously examines ternary blends of ammonia, refuse-derived fuels (RDFs), and coal. Utilizing an Aspen Plus simulation equilibrium model, a thorough review of the relevant literature, and evaluation reports on biomass-to-energy power plants and ammonia combustion, the analysis spans 20 years. It considers vital financial metrics such as the net present value (NPV), internal rate of return (IRR), and payback period (PBP). The findings indicate that the combustion of pure coal is the most energy-efficient but has the highest global warming potential (GWP). In contrast, ammonia and RDF blends significantly reduce GWP, with ammonia showing a 3215% lower GWP than coal. Economically, pure coal remains the most attractive option. However, blends of 80% coal, 10% ammonia, and 10% RDF also show promise with a PBP of 11.20 years at a 15% discount rate. These results highlight the potential of ammonia and RDF blends to balance environmental and economic considerations in power generation.

Suggested Citation

  • Antonio Chavando & Valter Bruno Silva & João Sousa Cardoso & Daniela Eusebio, 2025. "Evaluating Coal, RDF, and Ammonia Blends in Power Plants: Techno-Economic Insights and Coal Phase-Out Implications," Energies, MDPI, vol. 18(6), pages 1-29, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1524-:d:1615726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1524/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1524-:d:1615726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.