IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1140-d1599817.html
   My bibliography  Save this article

Study on Reactor Power Control Strategies Based on Mode-C Operation and Control Mode

Author

Listed:
  • Ying Zhang

    (National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China)

  • Zhi Chen

    (National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China)

  • Qing Chu

    (National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China)

  • Jixiang Zhou

    (National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China)

Abstract

At present, the operation control modes of pressurized water reactor (PWR) nuclear power plants in service mainly include Mode-A, Mode-G, and MSHIM. Mode-A is mainly applicable to base load operation and cannot realize load tracking. In the process of Mode-G load tracking, it is necessary to adjust boron, and it cannot realize load tracking without boron regulation. Although MSHIM implements unregulated boron load tracking, a large number of control rods are inserted into the core during base load operation, which reduces the safety margin and causes certain economic losses. In recent years, China National Nuclear Corporation Limited proposed the Mode-C operation control mode, which attempts to concentrate the advantages of the above operation mode and avoid its disadvantages. When Mode-C is adopted, only one set of control rods is inserted into the reactor core to complete the nuclear power plant control task for the base load and other operations that do not require frequent reactor power regulation. For load tracking and other operations requiring frequent reactor power regulation, control rods are used instead of adjusting soluble boron to control core reactivity. Reactivity compensation and power distribution control in the load-tracking process are completed through control rods. When Mode-C mode is adopted, the reactivity control method under base load and load tracking conditions is different from other mature operating modes. It is impossible to directly adopt the ready-made reactor power control system scheme, which brings challenges to the practical engineering application of Mode-C. To solve the above problems, based on the idea of single-variable automatic control and bivariable automatic control in Mode-C under different load demand conditions, this paper carries out research on the strategy of the reactor power control system and puts forward two specific control schemes. Through the control simulation program based on the one-dimensional core model, the simulation model of the control object and control system is established, and the closed-loop simulation verification of the control strategy is completed. The simulation results show that the designed reactor power control system can realize automatic control of the full power operating range and non-adjustable boron load tracking, reduce the operator’s burden, and meet the expected operation effect of the Mode-C operating mode.

Suggested Citation

  • Ying Zhang & Zhi Chen & Qing Chu & Jixiang Zhou, 2025. "Study on Reactor Power Control Strategies Based on Mode-C Operation and Control Mode," Energies, MDPI, vol. 18(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1140-:d:1599817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1140/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1140-:d:1599817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.