Author
Listed:
- Mohammed Niyasdeen Nejaamtheen
(Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea)
- Bu-Kyeng Sung
(Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea)
- Jeong-Yeol Choi
(Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea)
Abstract
A three-dimensional numerical investigation using ethylene–oxygen was conducted to examine the characteristics of detonation waves in a non-premixed rotating detonation engine (RDE) across three equivalence ratio conditions: fuel-lean, stoichiometric, and fuel-rich. The study aims to identify the distinct timescales associated with detonation wave propagation within the combustor and to analyze their impact on detonation wave behavior, emphasizing the influence of equivalence ratio and injector behavior on detonation wave characteristics. The results indicate that the wave behavior varies with mixture concentration, with the ethylene injector demonstrating greater stiffness compared to the oxygen injector. In lean mixtures, characterized by excess oxidizer, waves exhibit less intensity and slower progression toward equilibrium, resulting in prolonged reaction times. Rich mixtures, with excess fuel, also show a delayed approach to equilibrium and an extended chemical reaction timescale. In contrast, the near-stoichiometric mixture achieves efficient combustion with the highest thermicity, rapidly reaching equilibrium and exhibiting the shortest chemical reaction timescale. Overall, the induction timescale is generally 2–3 times longer than its respective chemical reaction timescale, while the equilibrium timescale spans a broad range, reflecting the complex, rapid dynamics inherent in these chemical processes. This study identifies the role of the characteristic chemical timescale in influencing the progression of pre-detonation deflagration in practical RDEs. Prolonged induction times in non-ideal conditions, such as those arising from equivalence ratio variations, promote incomplete reactions, thereby contributing to pre-detonation phenomena and advancing our understanding of the underlying flow physics.
Suggested Citation
Mohammed Niyasdeen Nejaamtheen & Bu-Kyeng Sung & Jeong-Yeol Choi, 2025.
"Numerical Analysis of the Characteristic Chemical Timescale of a C 2 H 4 /O 2 Non-Premixed Rotating Detonation Engine,"
Energies, MDPI, vol. 18(4), pages 1-25, February.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:4:p:989-:d:1593918
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:989-:d:1593918. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.