IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p769-d1585757.html
   My bibliography  Save this article

Current Research Status and Prospects of Electrode Boilers Under the Background of the “Dual Carbon” Goals

Author

Listed:
  • Zheng Zhao

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Rui Hu

    (China-Russia Advanced Energy and Power Technology ‘Belt and Road’ Joint Laboratory, Harbin 150001, China)

  • Yu Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Heming Dong

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    National Key Laboratory of Low-Carbon Thermal Power Generation Technology and Equipment, Harbin Boiler Company Limited, Harbin 150001, China)

  • Qian Du

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

In the context of “dual carbon” goals, energy structures are rapidly shifting towards cleaner, low-carbon solutions. The clean and efficient electrode boiler, with its unique heat generation mechanism, is well aligned with this trend. This review begins by outlining the operating principles of electrode boilers, emphasizing their advantages in terms of energy efficiency and environmental sustainability. It then examines the current status of electrode boiler applications within the framework of the “dual carbon” objectives, addressing key challenges and technological barriers. The review concludes that electrode boilers hold significant potential for clean heating, grid peak-shaving, and the integration of renewable energy. However, research on electrode materials, boiler-based water treatment, electric field distribution within boilers, and corrosion issues remains insufficient. To address these gaps, this paper proposes several recommendations, including fostering cross-regional scientific collaboration, advancing the development of new electrode materials and coatings, and leveraging smart internet technologies to optimize electrode boiler performance and applications.

Suggested Citation

  • Zheng Zhao & Rui Hu & Yu Zhang & Heming Dong & Qian Du, 2025. "Current Research Status and Prospects of Electrode Boilers Under the Background of the “Dual Carbon” Goals," Energies, MDPI, vol. 18(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:769-:d:1585757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    2. Chandran, V.G.R. & Sharma, Susan & Madhavan, Karunagaran, 2010. "Electricity consumption-growth nexus: The case of Malaysia," Energy Policy, Elsevier, vol. 38(1), pages 606-612, January.
    3. Kivyiro, Pendo & Arminen, Heli, 2014. "Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa," Energy, Elsevier, vol. 74(C), pages 595-606.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    2. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    3. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    4. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    5. Mahmut Zortuk & Sinan Çeken, 2016. "Testing Environmental Kuznets Curve in the Selected Transition Economies with Panel Smooth Transition Regression Analysis," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 18(43), pages 537-537, August.
    6. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    7. Habib Hussain Khan & Nahla Samargandi & Adeel Ahmed, 2021. "Economic development, energy consumption, and climate change: An empirical account from Malaysia," Natural Resources Forum, Blackwell Publishing, vol. 45(4), pages 397-423, November.
    8. Rahman, Md Saifur & Junsheng, Ha & Shahari, Farihana & Aslam, Mohamed & Masud, Muhammad Mehedi & Banna, Hasanul & Liya, Ma, 2015. "Long-run relationship between sectoral productivity and energy consumption in Malaysia: An aggregated and disaggregated viewpoint," Energy, Elsevier, vol. 86(C), pages 436-445.
    9. Rahman, Md. Saifur & Noman, Abu Hanifa Md. & Shahari, Farihana & Aslam, Mohamed & Gee, Chan Sok & Isa, Che Ruhana & Pervin, Sajeda, 2016. "Efficient energy consumption in industrial sectors and its effect on environment: A comparative analysis between G8 and Southeast Asian emerging economies," Energy, Elsevier, vol. 97(C), pages 82-89.
    10. Tarek Ghazouani, 2022. "The Effect of FDI Inflows, Urbanization, Industrialization, and Technological Innovation on CO2 Emissions: Evidence from Tunisia," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3265-3295, December.
    11. Rahman, M.S. & Shahari, Farihana & Rahman, Mahfuzur & Noman, Abu Hanifa Md, 2017. "The interdependent relationship between sectoral productivity and disaggregated energy consumption in Malaysia: Markov Switching approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 752-759.
    12. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia," Energy Policy, Elsevier, vol. 60(C), pages 892-905.
    13. Mrabet, Zouhair & Alsamara, Mouyad & Mimouni, Karim & Mnasri, Ayman, 2021. "Can human development and political stability improve environmental quality? New evidence from the MENA region," Economic Modelling, Elsevier, vol. 94(C), pages 28-44.
    14. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    15. Saša Obradović & Nemanja Lojanica, 2019. "Does environmental quality reflect on national competitiveness? The evidence from EU-15," Energy & Environment, , vol. 30(4), pages 559-585, June.
    16. Mohamed Abdouli & Sami Hammami, 2017. "Economic growth, FDI inflows and their impact on the environment: an empirical study for the MENA countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 121-146, January.
    17. Xiaopeng Guo & Jiaxing Shi & Dongfang Ren & Jing Ren & Qilin Liu, 2017. "Correlations between air pollutant emission, logistic services, GDP, and urban population growth from vector autoregressive modeling: a case study of Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 885-897, June.
    18. Liu, Xiaolian & Udemba, Edmund Ntom & Emir, Firat & Hussain, Sadam & Khan, Nazakat Ullah & Abdallah, Ibrahim, 2024. "Nexus between resource policy, renewable energy policy and export diversification: Asymmetric study of environment quality towards sustainable development," Resources Policy, Elsevier, vol. 88(C).
    19. Deshan Li & Yanfen Zhao & Rongwei Wu & Jiefang Dong, 2019. "Spatiotemporal Features and Socioeconomic Drivers of PM 2.5 Concentrations in China," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    20. Sunde, Tafirenyika, 2018. "Revisiting the Environmental Kuznets Curve and the Role of Energy Consumption: The Case of Namibia," MPRA Paper 86507, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:769-:d:1585757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.