IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p740-d1584687.html
   My bibliography  Save this article

Power Coefficient for Large Wind Turbines Considering Wind Gradient Along Height

Author

Listed:
  • Saroj Biswas

    (College of Engineering, Temple University, Philadelphia, PA 19122, USA)

  • Jim Shih-Jiun Chen

    (College of Engineering, Temple University, Philadelphia, PA 19122, USA)

Abstract

The Betz constant is the well-known aerodynamic limit of the maximum power which can be extracted from wind using wind turbine technologies, under the assumption that the wind speed is uniform across a blade disk. However, this condition may not hold for large wind turbines, since the wind speed may not be constant along their height; rather, it may vary with the location due to surface friction from tall buildings and trees, the topography of the Earth’s surface, and radiative heating and cooling in a 24 h cycle. This paper derives a new power coefficient for large wind turbines based on the power law exponent model of the wind gradient and height. The proposed power coefficient is a function of the size of the rotor disk and the Hellmann exponent, which describes the wind gradient based on wind stability at various locations, and it approaches the same value as the Betz limit for wind turbines with small rotor disks. It is shown that for large offshore wind turbines, the power coefficient was about 1.27% smaller than that predicted by the Betz limit, whereas for onshore turbines in human-inhabited areas with stable air, the power coefficient was about 8.7% larger. Our results are significant in two ways. First, we achieve generalization of the well-known Betz limit through elimination of the assumption of a constant wind speed across the blade disk, which does not hold for large wind turbines. Second, since the power coefficient depends on the location and air stability, this study offers guidelines for wind power companies regarding site selection for the installation of new wind turbines, potentially achieving greater energy efficiency than that predicted by the Betz limit.

Suggested Citation

  • Saroj Biswas & Jim Shih-Jiun Chen, 2025. "Power Coefficient for Large Wind Turbines Considering Wind Gradient Along Height," Energies, MDPI, vol. 18(3), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:740-:d:1584687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Christopher & Schindler, Dirk, 2023. "The properties of the global offshore wind turbine fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:740-:d:1584687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.