IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p322-d1565800.html
   My bibliography  Save this article

Method and Experimental Research of Transmission Line Tower Grounding Body Condition Assessment Based on Multi-Parameter Time-Domain Pulsed Eddy Current Characteristic Signal Extraction

Author

Listed:
  • Yun Zuo

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Jie Wang

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Xiaoju Huang

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Yuan Liu

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Zhiwu Zeng

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Ruiqing Xu

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Yawen Chen

    (Construction Branch of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330036, China)

  • Kui Liu

    (Jiangxi Power Transmission and Transformation Engineering Co., Ltd., Nanchang 330043, China)

  • Hongkang You

    (State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

  • Jingang Wang

    (State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China)

Abstract

Pole tower grounding bodies are part of the normal structure of the power system, providing relief from fault currents and equalizing overvoltage channels. They are important devices; however, in the harsh environment of the soil, they are prone to corrosion or even fracture, which in turn affects the normal utilization of the transmission line, so accurately assessing the condition of grounding bodies of the power grid is critical. To assess the operational status of a grounding body in a timely manner, this paper proposes a multi-parameter pulsed eddy current (PEC) time-domain characteristic signal corrosion classification method for the detection of the state of a pole tower grounding body. The method firstly theoretically analysed the influence of multi-parameter changes on the PEC response time-domain feature signal caused by grounding body corrosion and extracts the decay time constant (DTC), and the decay time constant stabilization value (DTCSV) and time to stabilization (TTS) were obtained based on the DTC time domain characteristics for describing the corrosion of the grounding body. Subsequently, DTCSV and TTS were used as inputs to a support vector machine (SVM) to classify the corrosion of the grounding body. A simulation model was constructed to investigate the effect of multiparameter time on the DTCSV and TTS of the tower grounding body based on the single-variable method, and the multiparameter time-domain characterization method used for corrosion assessment was validated. Four defects with different corrosion levels were classified using the optimized SVM model, with an accuracy rate of 95%. Finally, a PEC inspection system platform was built to conduct classification tests on steel bars with different degrees of corrosion, and the results show that the SVM classification model based on DTCSV and TTS has a better discriminatory ability for different corrosive grounders and can be used to classify corrosion in the grounders of poles towers to improve the stability of power transmission.

Suggested Citation

  • Yun Zuo & Jie Wang & Xiaoju Huang & Yuan Liu & Zhiwu Zeng & Ruiqing Xu & Yawen Chen & Kui Liu & Hongkang You & Jingang Wang, 2025. "Method and Experimental Research of Transmission Line Tower Grounding Body Condition Assessment Based on Multi-Parameter Time-Domain Pulsed Eddy Current Characteristic Signal Extraction," Energies, MDPI, vol. 18(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:322-:d:1565800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Pengcheng & Wang, Jingang & Xia, Haiting & He, Wei, 2024. "A novel industrial magnetically enhanced hydrogen production electrolyzer and effect of magnetic field configuration," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Henkel & Lukas Peter Wagner & Felix Gehlhoff & Alexander Fay, 2024. "Combination of Site-Wide and Real-Time Optimization for the Control of Systems of Electrolyzers," Energies, MDPI, vol. 17(17), pages 1-17, September.
    2. Chukwuma Ogbonnaya & Grace Hegarty, 2024. "Manufacturing Strategies for a Family of Integrated Photovoltaic-Fuel Cell Systems," Energies, MDPI, vol. 17(19), pages 1-16, September.
    3. Baojiang Tian & Pei Guo & Xingwei Du & Xiaoyu Liao & Chao Xiao & Yiran Dong & Jingang Wang, 2024. "Interference Characteristics of Electromagnetic Transient Overvoltage on Secondary Equipment of UHV Fixed Series Capacitors," Energies, MDPI, vol. 17(21), pages 1-12, November.
    4. Zhiwu Zeng & Zheng Guo & Fan Gan & Yun Zuo & Xu Tian & Xinxun Wang & Zhichi Lin & Wanyi Zhu & Xiaotian Wang & Jingang Wang, 2025. "Array Coil Design and Experimental Verification for Separation of Tower Grounding Pulsed Eddy Current Excitation and Response Magnetic Field Signals," Energies, MDPI, vol. 18(2), pages 1-15, January.
    5. Zhaochuang Zhang & Jianhua Xia & Yuchuan Wen & Liting Weng & Zuofu Ma & Hekai Yang & Haobo Yang & Jinyao Dou & Jingang Wang & Pengcheng Zhao, 2024. "Detection Method for Inter-Turn Short Circuit Faults in Dry-Type Transformers Based on an Improved YOLOv8 Infrared Image Slicing-Aided Hyper-Inference Algorithm," Energies, MDPI, vol. 17(18), pages 1-14, September.
    6. Liting Weng & Jianhua Xia & Zhaochuang Zhang & Jingang Wang & Lin Chen & Yingbo Zi & Lingyi Ma & Xingyu Zhang & Fan Zhang & Pengcheng Zhao, 2024. "Online Measurement Method for Circuit Breaker Mechanical–Time Characteristics Based on Transient Voltage and Current Signal Feature Extraction," Energies, MDPI, vol. 18(1), pages 1-16, December.
    7. Liuzhou Zhou & Zhen Yao & Ke Sun & Zhongliang Tian & Jie Li & Qifan Zhong, 2024. "Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis," Energies, MDPI, vol. 17(19), pages 1-26, September.
    8. Luciano T. Barbosa & Samuel D. Vasconcelos & Pedro A. C. Rosas & José F. C. Castro & Douglas C. P. Barbosa, 2024. "Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids," Energies, MDPI, vol. 17(19), pages 1-28, September.
    9. Giuseppe Graber & Vito Calderaro & Vincenzo Galdi & Lucio Ippolito & Fabrizio De Caro & Alfredo Vaccaro, 2024. "Day-Ahead Optimization of Proton Exchange Membrane Electrolyzer Operations Considering System Efficiency and Green Hydrogen Production Constraints Imposed by the European Regulatory Framework," Energies, MDPI, vol. 17(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:322-:d:1565800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.