Author
Listed:
- Paweł Olejnik
(Department of Automation, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowski Str., 90-537 Lodz, Poland
These authors contributed equally to this work.)
- Yared D. Desta
(Department of Automation, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowski Str., 90-537 Lodz, Poland
These authors contributed equally to this work.)
- Marcin Mydłowski
(Department of Automation, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowski Str., 90-537 Lodz, Poland
These authors contributed equally to this work.)
Abstract
This study investigates the modeling and dynamic analysis of three coupled electromechanical systems, emphasizing interactions between a magnetic linear drive and frictional contact with flat springs. The experimental setup includes a table driven by a three-phase permanent magnet linear synchronous motor (PMLSM) using an LMCA4 inductor, LMCAS3 magnetic track, and Xenus XTL controller. Mechanical phenomena such as stick-slip friction and impulsive loads are observed, particularly due to the rapid buckling of flat springs. These springs transition between sliding friction and fixation, impacting the motor’s operation during reciprocating velocity trajectories and generating acoustic emissions. Numerical simulations using COMSOL Multiphysics evaluate the magnetic field and system geometry in two- and three-dimensional spaces. Key findings include mechanical stick-slip vibrations, numerical modeling of the linear drive, and comparative analysis of experimental and simulated inductor current variations. Additionally, energy loss mechanisms under irregular loading conditions are assessed. The results highlight the coupling between friction-induced current changes and magnetic field variations, elucidating their impact on motor efficiency, vibration propagation, and acoustic emissions. The study provides insights into optimizing the design and reliability of coreless linear motors for precision applications under discontinuous loading.
Suggested Citation
Paweł Olejnik & Yared D. Desta & Marcin Mydłowski, 2025.
"Magnetic Field Distribution and Energy Losses in a Permanent Magnet Linear Synchronous Motor Under Stick-Slip Friction,"
Energies, MDPI, vol. 18(1), pages 1-27, January.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:1:p:191-:d:1560316
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:191-:d:1560316. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.