IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p56-d1554341.html
   My bibliography  Save this article

Thermogravimetric Experimental Study on the Co-Combustion Characteristics of Coal and Salix

Author

Listed:
  • Yinsheng Ma

    (Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China)

  • Bao Feng

    (Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China)

  • Li Gao

    (Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China)

  • Zhenyu Guo

    (Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China)

  • Yu Ai

    (Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China)

  • Haoying Sun

    (Guoneng Jinjie Energy Co., Ltd., Yulin 719319, China)

  • Yong Zhang

    (Yantai Longyuan Power Technology Co., Ltd., Yantai 264006, China)

  • Zhenyan Pan

    (Yantai Longyuan Power Technology Co., Ltd., Yantai 264006, China)

  • Jingwen Mao

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ruyu Yan

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ningzhu Ye

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Deng

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

To study the co-combustion characteristics of coal and Salix, thermogravimetric analysis is adopted to evaluate their co-combustion performance. The effect of blending ratios and synergistic are investigated in detail. Furthermore, kinetic analysis is performed. The results show that the incorporation of Salix into coal enhances combustion performance, with significant improvements observed at higher blending ratios. The ignition temperature decreases notably from 444 °C to 393 °C, highlighting an improvement in ignition properties. The primary weight loss peak shifts from 490 °C at a 15% biomass blend to approximately 320 °C at a 100% blend. Co-combustion demonstrates synergistic effects, with a 15% biomass blend optimizing combustion between 400 °C and 530 °C, while a 30% blend inhibits it. Additionally, temperatures above 600 °C exhibit an inhibitory effect. The activation energy is reduced to 25.38 kJ mol −1 at a 30% blend ratio and further to 23.06 kJ mol −1 at a 15% blend ratio at a heating rate of 30 K min −1 . Increasing the biomass blend ratio and heating rate lowers the activation energy, which means facilitating the reaction process.

Suggested Citation

  • Yinsheng Ma & Bao Feng & Li Gao & Zhenyu Guo & Yu Ai & Haoying Sun & Yong Zhang & Zhenyan Pan & Jingwen Mao & Ruyu Yan & Ningzhu Ye & Lei Deng, 2024. "Thermogravimetric Experimental Study on the Co-Combustion Characteristics of Coal and Salix," Energies, MDPI, vol. 18(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:56-:d:1554341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Chunshan & Suzuki, Kenzi, 2010. "Resources, properties and utilization of tar," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 905-915.
    2. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    2. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    3. Laougé, Zakari Boubacar & Merdun, Hasan, 2021. "Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion," Energy, Elsevier, vol. 231(C).
    4. Wan, Kaidi & Vervisch, Luc & Gao, Zhenxun & Domingo, Pascale & Jiang, Chongwen & Xia, Jun & Wang, Zhihua, 2020. "Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms," Energy, Elsevier, vol. 211(C).
    5. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    6. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    7. Zhang, Yongsheng & Zahid, Ibrar & Danial, Ali & Minaret, Jamie & Cao, Yijun & Dutta, Animesh, 2021. "Hydrothermal carbonization of miscanthus: Processing, properties, and synergistic Co-combustion with lignite," Energy, Elsevier, vol. 225(C).
    8. Vershinina, Ksenia Yu & Dorokhov, Vadim V. & Romanov, Daniil S. & Strizhak, Pavel A., 2022. "Combustion stages of waste-derived blends burned as pellets, layers, and droplets of slurry," Energy, Elsevier, vol. 251(C).
    9. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    10. Guo, Feihong & Chen, Jun & He, Yi & Gardy, Jabbar & Sun, Yahui & Jiang, Jingyu & Jiang, Xiaoxiang, 2022. "Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder," Renewable Energy, Elsevier, vol. 191(C), pages 213-224.
    11. Kijo-Kleczkowska, Agnieszka & Szumera, Magdalena & Gnatowski, Adam & Sadkowski, Dominik, 2022. "Comparative thermal analysis of coal fuels, biomass, fly ash and polyamide," Energy, Elsevier, vol. 258(C).
    12. Peng, Zeyu & Zhang, Qian & Liang, Litong & Gao, Zhihua & Wang, Dong & Li, Le & Han, Chun & Jia, Yu & Huang, Wei, 2024. "Evolution of structure and pyrolysis behavior of macerals and their interaction based on macro separation of a sub-bituminous coal," Energy, Elsevier, vol. 312(C).
    13. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    14. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    15. Yu, Zhenyu & Xie, Huaqing & Guo, Rui & Yu, Qingbo & Wang, Kun & Shao, Zhengri & Zhang, Weidong, 2024. "High-quality utilization of raw coke oven gas for hydrogen production based on CO2 adsorption-enhanced reforming," Energy, Elsevier, vol. 305(C).
    16. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.
    17. Yalin Wang & Beibei Yan & Yu Wang & Jiahao Zhang & Xiaozhong Chen & Rob J. M. Bastiaans, 2021. "A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    18. Cai, Jiawei & Wang, Ruwei & Niu, Zhiyuan & Huang, Qing & Huang, Zhuliang & Xu, Yuchan & Yang, Qiling & Liu, Zhixiang, 2023. "Evolutions of functional groups and polycyclic aromatic hydrocarbons during low temperature pyrolysis of a perhydrous bituminous coal," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:56-:d:1554341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.