Author
Listed:
- Mariusz Jerzy Stolarski
(Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland
Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-719 Olsztyn, Poland)
- Michał Welenc
(Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)
- Michał Krzyżaniak
(Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)
- Ewelina Olba-Zięty
(Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland
Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-719 Olsztyn, Poland)
- Jakub Stolarski
(Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland)
- Sławomir Wierzbicki
(Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719 Olsztyn, Poland)
Abstract
Solid biofuels, including straw as production residue, are still the largest energy feedstock in the structure of primary energy production from renewable energy sources. However, the properties of straw as a solid biofuel can vary depending on the species from which it was produced and the harvest period and year. Therefore, this study aimed to assess the thermophysical properties and elemental composition of six types of straw (rye, oat, triticale, wheat, corn, and rapeseed straw) obtained over three consecutive years (2020, 2021, 2022). Rye straw had the lowest moisture (mean: 10.55%), ash (mean: 2.71% DM), nitrogen (mean: 0.54% DM) and chlorine (mean: 0.046% DM) contents and the highest carbon content (mean: 47.93% DM), a higher heating value—HHV (mean: 19.03 GJ Mg −1 DM) and a lower heating value—LHV (mean: 15.71 GJ Mg −1 ). Triticale straw had similar properties, classifying it into the same cluster as rye straw. Corn straw had a remarkably high moisture content (mean: 48.91%), low LHV and high chlorine content. Rapeseed straw contained high levels of Cl, S, N and ash, and they were 643%, 481%, 104% and 169% higher, respectively, than those in rye straw. The sulfur, chlorine and moisture contents of the six straw types under study were highly variable during the three years of the study. Knowledge of the properties of different types of straw as energy feedstocks facilitates the logistics and organization of the supply of bioenergy installations. However, further research is needed, especially studies assessing the energy intensity and logistical costs of different types of straw used for energy purposes.
Suggested Citation
Mariusz Jerzy Stolarski & Michał Welenc & Michał Krzyżaniak & Ewelina Olba-Zięty & Jakub Stolarski & Sławomir Wierzbicki, 2024.
"Characteristics and Changes in the Properties of Cereal and Rapeseed Straw Used as Energy Feedstock,"
Energies, MDPI, vol. 17(5), pages 1-13, March.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:5:p:1243-:d:1351678
Download full text from publisher
References listed on IDEAS
- Yanli Fu & Jie Zhang & Tianzhu Guan, 2023.
"High-Value Utilization of Corn Straw: From Waste to Wealth,"
Sustainability, MDPI, vol. 15(19), pages 1-14, October.
- Renata Tobiasz-Salach & Barbara Stadnik & Marcin Bajcar, 2023.
"Oat as a Potential Source of Energy,"
Energies, MDPI, vol. 16(16), pages 1-19, August.
Full references (including those not matched with items on IDEAS)
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1243-:d:1351678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.