IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1236-d1351371.html
   My bibliography  Save this article

A Prototype Reactor Promoting the Hg(0) Capture in the Simulated Flue Gas from Small-Scale Boilers by Using Copper Oxide- and Copper Sulfide-Coated Teflon Pipes

Author

Listed:
  • Yinyou Deng

    (Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Jerzy Górecki

    (Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Katarzyna Szramowiat-Sala

    (Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków, Poland)

  • Mariusz Macherzynski

    (Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

In this study, we designed a prototype reactor, the multiple pipes reactor (MPR), for Hg(0) capture, which can be applied in small-scale boilers. It was tested on a laboratory scale by comparing it with a fixed-bed type, the vertical glass reactor (VGR). In total, 200 mg of CuO and CuS was applied as sorbent materials to reduce the concentration of Hg(0) from the simulated flue gas, in both VGR and MPR reactors. The mercury capture measurements were performed in the same laboratory system at 125 °C and a flow rate of 54 L/h. The contact time between the sorbents and simulated flue gas in the VGR was 0.035 s for both materials. In the case of the MPR, it was 0.44 s (CuO coating) and 0.63 s (CuS coating), depending on the coating area. The contact area inside the VGR was 5.31 cm 2 , contrasting with the values of 13.19 cm 2 (CuO coating) and 18.84 cm 2 (CuS coating) in the MPRs. The average Hg(0) capture effectiveness of CuO (granulate) and CuS (granulate) was 51% and 67% in VGR, respectively. The MPR with CuO- and CuS-coating Teflon (PTFE) pipes promoted an average Hg(0) capture effectiveness reaching 65 (by 268%) and 94% (by 158%), respectively.

Suggested Citation

  • Yinyou Deng & Jerzy Górecki & Katarzyna Szramowiat-Sala & Mariusz Macherzynski, 2024. "A Prototype Reactor Promoting the Hg(0) Capture in the Simulated Flue Gas from Small-Scale Boilers by Using Copper Oxide- and Copper Sulfide-Coated Teflon Pipes," Energies, MDPI, vol. 17(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1236-:d:1351371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Shu & Liu, Hao & He, Yuzhen & Yang, Yu & Sui, Ran & Lu, Qiang, 2023. "Combustion of biomass pyrolysis gas: Roles of radiation reabsorption and water content," Renewable Energy, Elsevier, vol. 205(C), pages 864-872.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jinrui & Li, Fashe & Zhang, Huicong & Duan, Yaozong & Wang, Shuang & Tan, Fangguan & Chen, Yong & Lu, Fengju & Luo, Linglin, 2023. "Effects of fuel components and combustion parameters on the formation mechanism and emission characteristics of aldehydes from biodiesel combustion," Renewable Energy, Elsevier, vol. 219(P1).
    2. Li, Zhuoyu & Dai, Huaming & Zhai, Cheng, 2024. "Integrated porous self-sustaining combustion of inert pellets and reactive wood lamellae with additives: Dynamic co-production method for heat and hydrogen," Energy, Elsevier, vol. 303(C).
    3. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1236-:d:1351371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.