IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p682-d1330394.html
   My bibliography  Save this article

Experimental Study on the Effect of Sand and Dust on the Performance of Photovoltaic Modules in Desert Areas

Author

Listed:
  • Xin Liu

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Ningbo Wang

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Mingzhi Zhao

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Xiaoming Hu

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

Abstract

Photovoltaic power generation is one of the most effective measures to reduce greenhouse gas emissions, and the surface of photovoltaic modules in desert areas is mainly affected by sand erosion and cover, which affect power output. Therefore, a wind–sand erosion system was established to simulate the desert wind–sand environment, analyze the influence of dust erosion on the output power of the component, and observe the surface erosion morphology of the component. Then, dust particles of different sizes were selected to cover the surface of the photovoltaic module, and the temperature change and output characteristics of the backplane of the module were studied. The results show that the erosion rate increases with the increase in the erosion angle. When the erosion rate is 25 m/s and 30 m/s, the output power decreases by 9.82%~16.00% and 15.42%~24.46% at different erosion angles, respectively. As the particle size (0.05 mm~0.30 mm) deposited on the surface of the photovoltaic module gradually increases, the open-circuit voltage of the module changes little, and its maximum difference is 0.25 V. Short-circuit current and output power vary greatly; the maximum difference in short-circuit current is about 13.00%, and the maximum difference in output power is about 17.00%. Through our research, this study provides a certain reference for maximizing power generation efficiency and the clean planning of desert photovoltaic power stations.

Suggested Citation

  • Xin Liu & Ningbo Wang & Mingzhi Zhao & Xiaoming Hu, 2024. "Experimental Study on the Effect of Sand and Dust on the Performance of Photovoltaic Modules in Desert Areas," Energies, MDPI, vol. 17(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:682-:d:1330394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingzhi Zhao & Ningbo Wang & Chun Chang & Xiaoming Hu & Yingjie Liu & Lei Liu & Jianan Wang, 2023. "Comparative Analysis of the Filling Mass of Vertical Heat Exchanger Tubes on the Thermal Environment of Arched Greenhouses," Energies, MDPI, vol. 16(13), pages 1-28, July.
    2. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    2. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    3. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    4. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    6. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    7. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    8. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    9. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    10. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    11. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    12. Nouhaila Najmi & Ahmed Rachid, 2023. "A Review on Solar Panel Cleaning Systems and Techniques," Energies, MDPI, vol. 16(24), pages 1-18, December.
    13. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    14. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    15. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    16. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Collision-adhesion mechanism of particles and dust deposition simulation on solar PV modules," Renewable Energy, Elsevier, vol. 176(C), pages 169-182.
    17. Sahouane, Nordine & Ziane, Abderrezzaq & Dabou, Rachid & Neçaibia, Ammar & Rouabhia, Abdelkrim & Lachtar, Salah & Blal, Mohammed & Slimani, Abdeldjalil & Boudjamaa, Tidjar, 2023. "Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara," Renewable Energy, Elsevier, vol. 205(C), pages 142-155.
    18. Sun, Ke & Lu, Lin & Jiang, Yu & Wang, Yuanhao & Zhou, Kun & He, Zhu, 2018. "Integrated effects of PM2.5 deposition, module surface conditions and nanocoatings on solar PV surface glass transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4107-4120.
    19. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Shing-Lih Wu & Hung-Cheng Chen & Kai-Jun Peng, 2023. "Quantification of Dust Accumulation on Solar Panels Using the Contact-Characteristics-Based Discrete Element Method," Energies, MDPI, vol. 16(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:682-:d:1330394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.