IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p367-d1317437.html
   My bibliography  Save this article

CO 2 -Free Hydrogen Production by Methane Pyrolysis Utilizing a Portion of the Produced Hydrogen for Combustion

Author

Listed:
  • Takuma Uehara

    (Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan)

  • Makoto Asahara

    (Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan)

  • Takeshi Miyasaka

    (Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan)

Abstract

Air pollutants such as carbon dioxide and nitrogen oxides emitted by the combustion of fossil fuels have become the subject of increasing concern. Hydrogen has accordingly emerged as a promising low-emission alternative energy source. Among the various methods for hydrogen production, methane pyrolysis, which produces hydrogen without emitting carbon dioxide, has gained substantial attention. This study evaluated the self-sustainability of a new hydrogen production system based on methane pyrolysis, in which a portion of the hydrogen produced is used as combustion fuel rather than relying on catalysts and electrical heating. Coupled heat transfer and one-dimensional reaction simulations employing two plug-flow reactors of a counterflow double-pipe heat exchanger were conducted to investigate the feasibility and efficiency of the proposed system, as well as the influence of flow conditions on hydrogen production. The results confirmed system viability, informed the estimation of hydrogen production rates, and provided methane conversion rate data emphasizing the critical role of low-flow conditions and residence time in system efficiency. Additionally, the production of carbon constituted a significant aspect of system efficiency. These findings indicate that the proposed system can produce environmentally friendly hydrogen, contributing to its potential utilization as a sustainable energy source.

Suggested Citation

  • Takuma Uehara & Makoto Asahara & Takeshi Miyasaka, 2024. "CO 2 -Free Hydrogen Production by Methane Pyrolysis Utilizing a Portion of the Produced Hydrogen for Combustion," Energies, MDPI, vol. 17(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:367-:d:1317437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Janoszek & Wojciech Masny, 2021. "CFD Simulations of Allothermal Steam Gasification Process for Hydrogen Production," Energies, MDPI, vol. 14(6), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Zelenak & Erika Skvarekova & Andrea Senova & Gabriel Wittenberger, 2021. "The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy," Energies, MDPI, vol. 14(13), pages 1-15, June.
    2. Lele Feng & Maifan Dong & Yuxin Wu & Junping Gu, 2021. "Comparison of Tar Samples from Reaction Zone and Outlet in Ex-Situ Underground Coal Gasification Experiment," Energies, MDPI, vol. 14(24), pages 1-11, December.
    3. Milan Durdán & Marta Benková & Marek Laciak & Ján Kačur & Patrik Flegner, 2021. "Regression Models Utilization to the Underground Temperature Determination at Coal Energy Conversion," Energies, MDPI, vol. 14(17), pages 1-28, September.
    4. Simone Ferrari & Riccardo Rossi & Annalisa Di Bernardino, 2022. "A Review of Laboratory and Numerical Techniques to Simulate Turbulent Flows," Energies, MDPI, vol. 15(20), pages 1-56, October.
    5. Zhizhen Zhang & Xiao Yang & Xiaoji Shang & Huai Yang, 2022. "A Thermal-Hydrological-Mechanical-Chemical Coupled Mathematical Model for Underground Coal Gasification with Random Fractures," Mathematics, MDPI, vol. 10(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:367-:d:1317437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.