IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p366-d1317380.html
   My bibliography  Save this article

Analysis of Varying Temperature Regimes in a Conductive Strip during Induction Heating under a Quasi-Steady Electromagnetic Field

Author

Listed:
  • Roman Musii

    (Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Marek Lis

    (Faculty of Electrical Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Petro Pukach

    (Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Andriy Chaban

    (Faculty of Transport, Electrical Engineering, and Computer Science, University of Radom, 26-600 Radom, Poland)

  • Andrzej Szafraniec

    (Faculty of Transport, Electrical Engineering, and Computer Science, University of Radom, 26-600 Radom, Poland)

  • Myroslava Vovk

    (Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Nataliia Melnyk

    (Institute of Computer Sciences and Information Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

Abstract

Transition processes in a steel conductive strip are analyzed during its induction heating under a quasi-steady electromagnetic field. In particular, the temperature field in the strip is studied. A method of solving corresponding initial boundary problems in a two-dimensional mathematical model for differential equations of electrodynamics and heat conduction is developed. The Joule heat and the temperature are determined with a high level of accuracy. The defining functions are the temperature and component of the magnetic field intensity vector tangent to the bases and end planes of the strip. To find them, we use cubic approximation of the defining functions’ distribution along the thickness coordinate. The original two-dimensional initial boundary value problems for the defining functions are reduced to one-dimensional initial boundary value problems on their integral characteristics. General solutions for these problems are obtained using the finite integral transformation by the transverse variable and the Laplace transform of the integral by time. Integral characteristics’ expressions are represented as convolutions for functions that describe homogeneous solutions of one-dimensional initial boundary value problems and limiting values of defining functions on the bases and end planes of the strip. The change of temperature under a varying regime in the dimensionless Fourier time and temperature distribution over the strip cross-section in a steady state depending on the parameters of induction heating and the Biot number are numerically analyzed. Varying and constant temperature regimes of the strip under conditions of the near-surface and continuous induction heating are studied.

Suggested Citation

  • Roman Musii & Marek Lis & Petro Pukach & Andriy Chaban & Andrzej Szafraniec & Myroslava Vovk & Nataliia Melnyk, 2024. "Analysis of Varying Temperature Regimes in a Conductive Strip during Induction Heating under a Quasi-Steady Electromagnetic Field," Energies, MDPI, vol. 17(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:366-:d:1317380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Musii & Petro Pukach & Ihor Kohut & Myroslava Vovk & Ľudomír Šlahor, 2022. "Determination and Analysis of Joule’s Heat and Temperature in an Electrically Conductive Plate Element Subject to Short-Term Induction Heating by a Non-Stationary Electromagnetic Field," Energies, MDPI, vol. 15(14), pages 1-11, July.
    2. Roman Musii & Petro Pukach & Nataliia Melnyk & Myroslava Vovk & L’udomír Šlahor, 2023. "Modeling of the Temperature Regimes in a Layered Bimetallic Plate under Short-Term Induction Heating," Energies, MDPI, vol. 16(13), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huabin Song & Youhua Wang & Jiangpai Peng & Chengcheng Liu, 2022. "Study on the Uniformity of Temperature Distribution of Transverse Flux Induction Heating Based on a New Magnetic Pole," Energies, MDPI, vol. 15(19), pages 1-15, October.
    2. Roman Musii & Petro Pukach & Nataliia Melnyk & Myroslava Vovk & L’udomír Šlahor, 2023. "Modeling of the Temperature Regimes in a Layered Bimetallic Plate under Short-Term Induction Heating," Energies, MDPI, vol. 16(13), pages 1-12, June.
    3. Stanisław Ledakowicz & Olexa Piddubniak, 2023. "Temperature Distribution in a Finite-Length Cylindrical Channel Filled with Biomass Transported by Electrically Heated Auger," Energies, MDPI, vol. 16(17), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:366-:d:1317380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.