Author
Listed:
- Kacper Kuta
(Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland
KP Labs, 44-100 Gliwice, Poland)
- Grzegorz Nowak
(Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)
- Iwona Nowak
(Department of Mathematical Methods in Technology and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)
Abstract
The temperature field of an electronic optical instrument can affect the image quality realised by the instrument and, in extreme cases, lead to damage. This is particularly true for instruments operating in harsh environments such as space. The hyperspectral imaging optical instrument (OI) designed for the Intuition-1 (I-1) nanosatellite, currently in low Earth orbit, has been subjected to a numerical analysis of its thermal state under different operating conditions, and some preliminary experimental tests have been carried out to determine the maximum operating temperatures of its sensitive components and the risk of thermal damage. This work was part of a testing campaign prior to the deployment of Intuition-1. Three operational cases were analysed: (1) behaviour in the Earth’s atmospheric conditions when the OI is pointed at the Sun, (2) the end of the de-tumbling process in orbit with the Sun crossing the diagonal of the OI’s field of view, and (3) identification of the maximum possible number of consecutive Earth imaging cycles in orbit. The ultimate goal of this work was to validate the numerical approach used for these cases and to deepen the understanding of the thermal safety of the CMOS image sensor placed in the OI. For these cases, transient thermal field analyses were performed for the OI to determine the temperature distribution and its variability in the most thermally sensitive CMOS image sensor. The components of the OI and its overall structure were experimentally tested, and the results were used to validate the numerical models. The study showed that the built-in temperature sensor does not always reflect the actual CMOS temperature, and in some extreme cases the current temperature monitoring does not ensure its safe operation.
Suggested Citation
Kacper Kuta & Grzegorz Nowak & Iwona Nowak, 2024.
"Thermal Management of Cubesat Subsystem Electronics,"
Energies, MDPI, vol. 17(24), pages 1-24, December.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:24:p:6462-:d:1549799
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6462-:d:1549799. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.