Author
Listed:
- Qingjun Yang
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
- Yudong Liu
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
- Yuanyuan Tong
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
- Xuan Wang
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
Abstract
A high-speed valve (HSV) is used to control the friction plate accurately and flexibly in the shifting stages of an automatic transmission. In the past, the transient modeling and dynamic improvement of HSVs neglected fluid–solid coupling and motion-induced fluid force (MIFF), which made it difficult to improve the response performance and kinetic energy efficiency of HSVs. In order to fully represent the MIFF and internal flow field features, a novel general approximate model for HSVs with a more accurate fidelity unsteady computational fluid dynamics (CFD) analysis is built in this paper. In addition, the experimental data of HSVs when the sphere is moving in oil-free or oil-immersed media are collected to verify the proposed model. In order to validate the model, the mechanism law of buffer groove towards the MIFF is tracked at length. The motion-induced added mass with buffer groove is reduced by 43.9%. The experimental results show that under the working pressure of 1 MPa (rated pressure), the opening time is shortened to 0.90 ms, which is 11.8% shorter than the original structure. The closing time is shortened from 1.5 ms to 1.34 ms, which represents a decrease of 10.7%. The buffer groove improves the kinetic energy efficiency from 41.91% to 46.70% in the start-up phase and from 41.98% to 56.75% in the close-up phase. This study provides a new perspective for improving the dynamic performance and energy efficiency of the system in terms of the MIFF.
Suggested Citation
Qingjun Yang & Yudong Liu & Yuanyuan Tong & Xuan Wang, 2024.
"Experimental and Numerical Investigation of Motion-Induced Fluid Force for a High-Speed Valve,"
Energies, MDPI, vol. 17(24), pages 1-29, December.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:24:p:6389-:d:1547235
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6389-:d:1547235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.