IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6130-d1537288.html
   My bibliography  Save this article

Generating Electricity with Hydraulically Amplified Self-Healing Electrostatic (HASEL) Transducers

Author

Listed:
  • Isabel Hess

    (Mechanical and Aerospace Engineering Department, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA)

  • Stephen Chamot

    (National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA)

  • Blake Boren

    (National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA)

  • Patrick Musgrave

    (Mechanical and Aerospace Engineering Department, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA)

Abstract

This study identifies hydraulically amplified self-healing electrostatic (HASEL) transducers as electricity generators, contrary to their conventional role as actuators. HASELs are soft, variable-capacitance transducers inspired by biological muscles which were developed to mimic the flexibility and functionality of natural muscle tissues. This research characterizes HASELs as generators by reversing their energy conversion mechanism—generating electricity through mechanical deformation. The study assesses the practical laboratory performance of HASELs by analytic modeling and experimental evaluation. Outcomes of the study include the following: (i) up to 2.5 mJ per cycle per 50 mm wide HASEL pouch of positive net energy generation in experimental testing—corresponding to an energy density of 2.0 mJ cm −3 ; (ii) a maximum theoretical energy density of 4.2 mJ cm −3 ; (iii) the electromechanical characteristics governing efficient conversion; and (iv) design considerations to enhance HASEL generator performance in future applications. This study broadens HASEL’s applicability and utility as a multi-functional transducer for renewable energy and general adaptive electricity generation.

Suggested Citation

  • Isabel Hess & Stephen Chamot & Blake Boren & Patrick Musgrave, 2024. "Generating Electricity with Hydraulically Amplified Self-Healing Electrostatic (HASEL) Transducers," Energies, MDPI, vol. 17(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6130-:d:1537288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yufeng Chen & Huichan Zhao & Jie Mao & Pakpong Chirarattananon & E. Farrell Helbling & Nak-seung Patrick Hyun & David R. Clarke & Robert J. Wood, 2019. "Controlled flight of a microrobot powered by soft artificial muscles," Nature, Nature, vol. 575(7782), pages 324-329, November.
    2. James Salvador Niffenegger & Blake Boren, 2023. "Numerical Methods to Evaluate Hyperelastic Transducers: Hexagonal Distributed Embedded Energy Converters," Energies, MDPI, vol. 16(24), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong Yang & Rong Tan & Haojian Lu & Toshio Fukuda & Yajing Shen, 2022. "Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Luo, Bin & Xiao, Yang & Chen, Zhigang & Zhu, Kejun & Lu, Hanjing, 2024. "Emergence of chaos in an electroactive artificial muscle PVC gel under state-varying electromechanical parameters," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Yunlong Qiu & Jiajing Chen & Yuntong Dai & Lin Zhou & Yong Yu & Kai Li, 2024. "Mathematical Modeling of the Displacement of a Light-Fuel Self-Moving Automobile with an On-Board Liquid Crystal Elastomer Propulsion Device," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    4. Li-Juan Yin & Boyuan Du & Hui-Yi Hu & Wen-Zhuo Dong & Yu Zhao & Zili Zhang & Huichan Zhao & Shao-Long Zhong & Chenyi Yi & Liangti Qu & Zhi-Min Dang, 2024. "A high-response-frequency bimodal network polyacrylate elastomer with ultrahigh power density under low electric field," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jiang, Wei & Gao, Xu & Hu, Xiaodan & Fang, Duokui & Chen, Tao & Hou, Youmin, 2024. "Performance potential of fully-passive airborne wind energy system based on flapping airfoil," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6130-:d:1537288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.