IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5907-d1528780.html
   My bibliography  Save this article

Research on Fast SOC Balance Control of Modular Battery Energy Storage System

Author

Listed:
  • Jianlin Wang

    (School of Medical Technology, North Minzu University, Yinchuan 750030, China)

  • Shenglong Zhou

    (School of Electrical and Information Engineering, North Minzu University, Yinchuan 750030, China)

  • Jinlu Mao

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Early SOC balancing techniques primarily centered on simple hardware circuit designs. Passive balancing circuits utilize resistors to consume energy, aiming to balance the SOC among batteries; however, this approach leads to considerable energy wastage. As research progresses, active balancing circuits have garnered widespread attention. Successively, active balancing circuits utilizing capacitors, inductors, and transformers have been proposed, enhancing balancing efficiency to some extent. Nevertheless, challenges persist, including energy wastage during transfers between non-adjacent batteries and the complexity of circuit designs. In recent years, SOC balancing methods based on software algorithms have gained popularity. For instance, intelligent control algorithms are being integrated into battery management systems to optimize control strategies for SOC balancing. However, these methods may encounter issues such as high algorithmic complexity and stringent hardware requirements in practical applications. This paper proposes a fast state-of-charge (SOC) balance control strategy that incorporates a weighting factor within a modular battery energy storage system architecture. The modular distributed battery system consists of battery power modules (BPMs) connected in series, with each BPM comprising a battery cell and a bidirectional buck–boost DC-DC converter. By controlling the output voltage of each BPM, SOC balance can be achieved while ensuring stable regulation of the DC bus voltage without the need for external equalization circuits. Building on these BPMs, a sliding mode control strategy with adaptive acceleration coefficient weighting factors is designed to increase the output voltage difference of each BPM, thereby reducing the balancing time. Simulation and experimental results demonstrate that the proposed control strategy effectively increases the output voltage difference among the BPMs, facilitating SOC balance in a short time.

Suggested Citation

  • Jianlin Wang & Shenglong Zhou & Jinlu Mao, 2024. "Research on Fast SOC Balance Control of Modular Battery Energy Storage System," Energies, MDPI, vol. 17(23), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5907-:d:1528780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5907/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5907-:d:1528780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.