IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5665-d1519676.html
   My bibliography  Save this article

Energy Consumption Optimization for an Electric Delivery Vehicle

Author

Listed:
  • Andrzej Łebkowski

    (Department Renewable Energy Sources and Electromobility, Gdynia Maritime University, Morska 83 Str., 81-225 Gdynia, Poland)

Abstract

For nearly two centuries, electric drives have been used in transportation. Nevertheless, they were not always favored by designers. The century-long dominance of heat engines led to the disregard of numerous challenges associated with the operation of electric drive systems. One of these issues is the optimization of energy consumption by an electric vehicle. This publication proposes an electronic Energy Consumption Optimizer (ECO) that predictively uses information about the shape of the route and speed limits on its individual sections to control the motor speed and gear changes in the gearbox. This work presents the structure of the optimizer system and the developed control algorithms. Additionally, electric motor excitation control was used, which may have contributed to reducing the power and weight of the electric drive motor. Simulation studies carried out using WLTP test cycles and cycles from real road routes showed the potential to decrease energy consumption for vehicle movement by approximately 10%.

Suggested Citation

  • Andrzej Łebkowski, 2024. "Energy Consumption Optimization for an Electric Delivery Vehicle," Energies, MDPI, vol. 17(22), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5665-:d:1519676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    2. Bhattacharjee, Debraj & Ghosh, Tamal & Bhola, Prabha & Martinsen, Kristian & Dan, Pranab K., 2019. "Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel economy and performance," Energy, Elsevier, vol. 183(C), pages 235-248.
    3. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    4. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    5. Jari Vepsäläinen, 2022. "Energy Demand Analysis and Powertrain Design of a High-Speed Delivery Robot Using Synthetic Driving Cycles," Energies, MDPI, vol. 15(6), pages 1-21, March.
    6. Deng, Huifan & Zhao, Youqun & Feng, Shilin & Wang, Qiuwei & Zhang, Chenxi & Lin, Fen, 2021. "Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy," Energy, Elsevier, vol. 219(C).
    7. Li, Shiying & Xu, Jun & Gao, Haonan & Tao, Tao & Mei, Xuesong, 2020. "Safety probability based multi-objective optimization of energy-harvesting suspension system," Energy, Elsevier, vol. 209(C).
    8. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    9. Ma, Fangwu & Yang, Yu & Wang, Jiawei & Liu, Zhenze & Li, Jinhang & Nie, Jiahong & Shen, Yucheng & Wu, Liang, 2019. "Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication," Energy, Elsevier, vol. 189(C).
    10. Pan, Chaofeng & Huang, Aibao & Wang, Jian & Chen, Liao & Liang, Jun & Zhou, Weiqi & Wang, Limei & Yang, Jufeng, 2022. "Energy-optimal adaptive cruise control strategy for electric vehicles based on model predictive control," Energy, Elsevier, vol. 241(C).
    11. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5665-:d:1519676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.